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Abstract
We introduce a novel model for scheduling with explorable uncertainty. In this model, the
processing time of a job can potentially be reduced (by an a priori unknown amount) by testing
the job. Testing a job j takes one unit of time and may reduce its processing time from the given
upper limit p̄j (which is the time taken to execute the job if it is not tested) to any value between
0 and p̄j . This setting is motivated e.g. by applications where a code optimizer can be run on
a job before executing it. We consider the objective of minimizing the sum of completion times
on a single machine. All jobs are available from the start, but the reduction in their processing
times as a result of testing is unknown, making this an online problem that is amenable to
competitive analysis. The need to balance the time spent on tests and the time spent on job
executions adds a novel flavor to the problem. We give the first and nearly tight lower and
upper bounds on the competitive ratio for deterministic and randomized algorithms. We also
show that minimizing the makespan is a considerably easier problem for which we give optimal
deterministic and randomized online algorithms.
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1 Introduction

Uncertainty in scheduling has been modeled and investigated in many different ways, par-
ticularly in the frameworks of online optimization, stochastic optimization, and robust
optimization. All these different approaches have the common assumption that the uncertain
information, e.g., the processing time of a job, cannot be explored before making scheduling
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decisions. However, in many applications there is the opportunity to gain exact or more
precise information at a certain additional cost, e.g., by investing time, money, or bandwidth.

In this paper, we introduce a novel model for scheduling with explorable uncertainty.
Given a set of n jobs, every job j can optionally be tested prior to its execution. A job that is
executed without testing has processing time p̄j ∈ Q+, while a tested job has processing time
pj with 0 ≤ pj ≤ p̄j . Testing a job takes one unit of time on the same resource (machine)
that processes jobs. Initially the algorithm knows for each job j only the upper limit p̄j , and
gets to know the time pj only after a test. Tested jobs can be executed at any time after
their test. An algorithm must carefully balance testing and execution of jobs by evaluating
the benefit and cost for testing.

We focus on scheduling on a single machine. Unless otherwise noted, we consider the sum
of completion times as the minimization objective. We use competitive analysis to assess the
performance of algorithms.

For the standard version of this single-machine scheduling problem, i.e., without testing,
it is well known that the Shortest Processing Time (SPT) rule is optimal for minimizing the
sum of completion times. The addition of testing, combined with the fact that the processing
times pj are initially unknown to the algorithm, turns the problem into an online problem
with a novel flavor. An algorithm must decide which jobs to execute untested and which
jobs to test. Once a job has been tested, the algorithm must decide whether to execute it
immediately or to defer its execution while testing or executing other jobs. At any point in
the schedule, it may be difficult to choose between testing a job (which might reveal that it
has a very short processing time and hence is ideally suited for immediate execution) and
executing an untested or previously tested job. Testing a job yields information that may be
useful for the scheduler, but may delay the completion times of many jobs. Finding the right
balance between tests and executions poses an interesting challenge.

If the processing times pj that jobs have after testing are known, an optimal schedule is
easy to determine: Testing and executing job j takes time 1 +pj , so it is beneficial to test the
job only if 1 + pj < p̄j . In the optimal schedule, jobs are therefore ordered by non-decreasing
min{1 + pj , p̄j}. In this order, the jobs with 1 + pj < p̄j are tested and executed while jobs
with 1 +pj ≥ p̄j are executed untested. (For jobs with 1 +pj = p̄j it does not matter whether
the job is tested and executed, or executed untested.)

Motivation and applications. Scheduling with testing is motivated by a range of application
settings where an operation that corresponds to a test can be applied to jobs before they
are executed. We discuss some examples of such settings. First, consider the execution of
computer programs on a processor. A test could correspond to a code optimizer that takes
unit time to process the program and potentially reduces its running-time. The upper limit
of a job describes the running-time of the program if the code optimizer is not executed.

As another application, consider the transmission of files over a network link. It is possible
to run a compression algorithm that can reduce the size of a file by an a priori unknown
amount. If a file is incompressible (e.g., if it is already compressed), its size cannot be reduced
at all. Running the compression algorithm corresponds to a test.

In some systems, a job can be executed in two different modes, a safe mode and an
alternative mode. The safe mode is always possible. The alternative mode may have a shorter
processing time, but is not possible for every job. A test is necessary to determine whether
the alternative mode is possible for a job and what the processing time in the alternative
mode would be.
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As a final application area, consider settings where a diagnosis can be carried out to
determine the exact processing time of a job. For example, a fault diagnosis can determine
the time needed for a repair job, or a medical diagnosis can determine the time needed for a
consultation and treatment session with a patient. Assume that the resource that carries
out the diagnosis is the same resource that executes the job (e.g., an engineer or a medical
doctor), and that the resource must be allocated to a job for an uninterruptible period that
is guaranteed to cover the actual time needed for the job. If the diagnosis takes unit time,
we arrive at our problem of scheduling with testing.

Depending on the application under consideration, it may appear more natural to speak
about ‘compressing’ or ‘optimizing’ rather than ‘testing’ a job, but for the sake of simplicity
we use the term ‘testing’ throughout this paper.

In some applications, it may be appropriate to allow the time for testing a job to be
different for different jobs (e.g., proportional to the upper limit of a job). We leave the
consideration of such generalizations of the problem to future work.

Related work. Scheduling with testing can be viewed as a problem in the area of explor-
able (or queryable) uncertainty, where additional information about the input can be learned
using a query operation (in our case, a test). The line of research on optimization with
explorable uncertain data has been initiated by Kahan [8] in 1991. His work concerns selection
problems with the goal of minimizing the number of queries that are necessary to find the
optimal solution. Later, other problems studied in this uncertainty model include finding
the k-th smallest value in a set of uncertainty intervals [8, 7, 5] (also with non-uniform query
cost [5]), caching problems in distributed databases [12], computing a function value [9],
and classical combinatorial optimization problems, such as shortest path [4], finding the
median [5], the knapsack problem [6], and the MST problem [3, 11]. While most work aims
for minimal query sets to guarantee exact optimal solutions, Olsten and Widom [12] initiate
the study of trade-offs between the number of queries and the precision of the found solution.
They are concerned with caching problems. Further work in this vein can be found in [9, 4, 5].

In all this previous work, the execution of queries is separate from the actual optimization
problem being solved. In our case, the tests are executed by the same machine that runs the
jobs. Hence, the tests are not considered separately, but they directly affect the objective
value of the actual problem (by delaying the completion of other jobs while a job is being
tested). Hence, instead of minimizing the number of tests needed until an optimal schedule
can be computed (which would correspond to the standard approach in the work on explorable
uncertainty discussed above), in our case the tests of jobs are part of the schedule, and we
are interested in the sum of completion times as the single objective function.

Our adversarial model is inspired by (and draws motivation from) recent work on a
stochastic model of scheduling with testing introduced in [10, 13]. They consider the problem
of minimizing the weighted sum of completion times on one machine for jobs whose processing
times and weights are random variables with a joint distribution, and are independent and
identically distributed across jobs. In their model, testing a job does not make its processing
time shorter, it only provides information for the scheduler (by revealing the exact weight
and processing time for a job, whereas initially only the distribution is known). They present
structural results about optimal policies and efficient optimal or near-optimal solutions based
on dynamic programming.

Our contribution. A scheduling algorithm in the model of explorable uncertainty has to
make two types of decisions: which jobs should be tested, and in what order should job
executions and tests be scheduled. There is a subtle compromise to be found between
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Table 1 New contributions for minimizing the sum of completion times. * holds asymptotically

competitive ratio lower bound upper bound
deterministic algorithms 1.8546 2 Threshold
randomized algorithms 1.6257 1.7453 Random
det. alg. on uniform instances 1.8546 1.9338* BEAT
det. alg. on extreme uniform instances 1.8546 1.8668 UTE
det. alg. on extreme uniform inst. with p̄ ≈ 1.9896 1.8546 1.8552 UTE

investing time to test jobs and the benefit one can gain from these tests. We design
scheduling algorithms that address this exploration-exploitation question in different ways
and provide nearly tight bounds on the competitive ratio. In our analysis, we first show
that worst-case instances have a particular structure that can be described by only a few
parameters. This goes hand in hand with analyzing also the structure of both, an optimal
and an algorithm’s schedule. Then we express the total cost of both schedules as functions
of these few parameters. It is noteworthy that, under the assumptions made, we typically
characterize the exact worst-case ratio. Given the parameterized cost ratio, we analyze the
worst-case parameter choice. This technical part involves second order analysis which can be
performed with computer assistance. We use the algebraic solver Mathematica.

Our results are the following. For scheduling with testing on a single machine with the
objective of minimizing the sum of completion times, we present a 2-competitive deterministic
algorithm and prove that no deterministic algorithm can achieve competitive ratio less
than 1.8546. We then present a 1.7453-competitive randomized algorithm, showing that
randomization provably helps for this problem. We also give a lower bound of 1.626 on the
best possible competitive ratio of any randomized algorithm. Both lower bounds hold even
for instances with uniform upper limits where every processing time is either 0 or equal to
the upper limit. We call such instances extreme uniform instances. For such instances we
give a 1.8668-competitive algorithm. In the special case where the upper limit of all jobs is
≈ 1.9896, the value used in our deterministic lower bound construction, that algorithm is
even 1.8552-competitive. For the case of uniform upper limits and arbitrary processing times,
we give a deterministic 1.9338-competitive algorithm. An overview of these results is shown
in Table 1. Finally, we also mention some results for the simpler problem of minimizing the
makespan in scheduling with testing.

Omitted proofs can be found in a full version of the paper; see the preprint [2]. Compu-
tations performed with the support of Mathematica are provided as notebook- and pdf-files
at a companion webpage.1

2 Preliminaries

Problem definition. The problem of scheduling with testing is defined as follows. We are
given n jobs to be scheduled on a single machine. Each job j has an upper limit p̄j . It can
either be executed untested (taking time p̄j), or be tested (taking time 1) and then executed
at an arbitrary later time (taking time pj , where 0 ≤ pj ≤ p̄j). Initially only p̄j is known for
each job, and pj is only revealed after j is tested. The machine can either test or execute a
job at any time. The completion time of job j is denoted by Cj . Unless noted otherwise, we
consider the objective of minimizing the sum of completion times

∑
j Cj .

1 http://cslog.uni-bremen.de/nmegow/public/mathematica-SwT.zip

http://cslog.uni-bremen.de/nmegow/public/mathematica-SwT.zip
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Figure 1 Typical schedule produced by an algorithm. Jobs are grey, tests are white. The comple-
tion time of a job is depicted by a thick bar. A job of length 0 completes immediately after testing.

Performance analysis. We compare the performance of an algorithm Alg to the optimal
schedule using competitive analysis [1]. We denote by Alg(I) the objective value (cost)
of the schedule produced by Alg for an instance I, and by Opt(I) the optimal cost. An
algorithm Alg is ρ-competitive or has competitive ratio at most ρ if Alg(I)/Opt(I) ≤ ρ for
all instances I of the problem. For randomized algorithms, Alg(I) is replaced by E[Alg(I)]
in this definition.

When we analyze an algorithm or the optimal schedule, we will typically first argue that
the schedule has a certain structure with different blocks of tests or job completions. Once
we have established that structure, the cost of the schedule can be calculated by adding the
cost for each block taken in isolation, plus the effect of the block on the completion times of
later jobs. For example, assume that we have n jobs with upper limit p̄, that αn of these
jobs are short, with processing time 0, and (1− α)n jobs are long, with processing time p̄. If
an algorithm (in the worst case) first tests the (1− α)n long jobs, then tests the αn short
jobs and executes them immediately, and finally executes the (1− α)n long jobs that were
tested earlier (see also Figure 1), the total cost of the schedule can be calculated as

(1− α)n2 + αn(αn+ 1)
2 + αn(1− α)n+ (1− α)n((1− α)n+ 1)

2 p̄

where (1− α)n2 is the total delay that the (1− α)n tests of long jobs add to the completion
times of all n jobs, αn(αn+1)

2 is the sum of completion times of a block with αn short jobs
that are tested and executed, αn(1− α)n is the total delay that the block of short jobs with
total length αn adds to the completion times of the (1− α)n jobs that come after it, and
(1−α)n((1−α)n+1)

2 p̄ is the sum of completion times for a block with (1− α)n job executions
with processing time p̄ per job.

Lower limits. A natural generalization of the problem would be to allow each job j to have,
in addition to its upper limit p̄j , also a lower limit `j , such that the processing time after
testing satisfies `j ≤ pj ≤ p̄j . We observe that the presence of lower limits has no effect on
the optimal schedule, and can only help an algorithm. As we are interested in worst-case
analysis, we assume in the remainder of the paper that every job has a lower limit of 0. Any
algorithm that is ρ-competitive in this case is also ρ-competitive in the case with arbitrary
lower limits (the algorithm can simply ignore the lower limits).

Jobs with small p̄j . We will consider several algorithms and prove competitiveness for
them. We observe that any ρ-competitive algorithm may process jobs with p̄j < ρ without
testing in order of increasing p̄j at the beginning of its schedule.

I Lemma 1. Without loss of generality any algorithm Alg (deterministic or randomized)
claiming competitive ratio ρ starts by scheduling untested all jobs j with p̄j < ρ in increasing
order of p̄j. Also worst-case instances for Alg consist solely of jobs j with p̄j ≥ ρ.

ITCS 2018
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Increasing or decreasing Alg and Opt. Throughout the paper we sometimes consider
worst-case instances consisting of only a few different job types. The following proposition
allows us to do so in some cases.

I Proposition 2. Fix some algorithm Alg and consider a family of instances described by
some parameter x ∈ [`, u], which could represent pj or p̄j for some job j or for some set of
jobs. Suppose that both Opt and Alg are linear in x for the range [`, u]. Then the ratio
Alg/Opt does not decrease for at least one of the two choices x = ` or x = u. Moreover, if
Opt and Alg are increasing in x with the same slope, then this holds for x = `.

We can make successive use of this proposition in order to show useful properties on worst-case
instances. For this purpose we say that a schedule is insensitive to changes of the processing
times, if the order of tests and job executions does not change, even though some completion
times could be shifted.

I Lemma 3. Suppose that there is an interval [`′, u′] such that Opt schedules all jobs j
with pj ∈ [`′, u′] either all tested or all untested, independently of the actual processing time
in [`′, u′]. Suppose that this holds also for Alg. Moreover suppose that both Opt and Alg
are insensitive to changes of the processing times in [`′, u′] which maintain the ordering
of processing times. Then there is a worst-case instance for Alg where every job j with
pj ∈ [`′, u′] satisfies pj ∈ {`′, u′}.

Proof sketch. The proof consists of fixing some set of jobs S of the same processing time
and identifying an interval [`, u] around it with [`, u] ⊆ [`′, u′]. Then we can show that both
costs Opt and Alg are linear in x when changing the processing times of the jobs in S to
any value x ∈ [`, u]. Proposition 2 implies that choosing x ∈ {`, u} does not decrease the
competitive ratio. This argument can be repeated until the number of distinct processing
times in the open interval (`′, u′) decreases to zero. J

3 Deterministic Algorithms

3.1 Algorithm Threshold
We show a competitive ratio of 2 for a natural algorithm that uses a threshold to decide
whether to test a job or execute it untested.

I Algorithm (Threshold). First jobs with p̄j < 2 are scheduled in order of non-decreasing
upper limits without testing. Then all remaining jobs are tested. If the revealed processing
time of job j is pj ≤ 2 (short jobs), then the job is executed immediately after its test.
After all pending jobs (long jobs) have been tested, they are scheduled in order of increasing
processing time pj.

By Lemma 1 we may restrict our analysis w.l.o.g. to instances with p̄j ≥ 2. Note, that
on such instances Threshold tests all jobs. From a simple interchange argument it follows
that the structure of the algorithm’s solution in a worst-case instance is as follows.

The algorithm tests all jobs that have pj > 2, and defers them.
The algorithm tests short jobs (pj ≤ 2) and executes each of them right away. The jobs
are tested in order of non-increasing processing time.
The algorithm executes all deferred long jobs in order of non-decreasing processing times.

An optimal solution will not test jobs with pj + 1 ≥ p̄j . It sorts jobs in non-decreasing
order of values min{1 + pj , p̄j}.

First, we analyze and simplify worst-case instances.
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Figure 2 Worst-case instance for Threshold.

I Lemma 4. There is a worst-case instance for Threshold in which all short jobs with
pj ≤ 2 have processing time either 0 or 2.

I Lemma 5. There is a worst-case instance in which long jobs with pj > 2 satisfy pj = p̄j =
2 + ε for infinitesimally small ε > 0.

Now we are ready to prove the main result.

I Theorem 6. Algorithm Threshold has competitive ratio at most 2.

Proof. We consider worst-case instances given by Lemmas 4 and 5. Let a be the number of
short jobs with pj = 0, let b be the number of short jobs with p̄j = pj = 2, and let c be the
number of long jobs with p̄j = 2 + ε, see Figure 2.

Threshold’s solution for a worst-case instance first tests all long jobs, then tests and
executes the short jobs in decreasing order of processing times, and completes with the
executions of long jobs. The total objective value ALG is

Alg = (a+ b+ c)c+ b(b+ 1)/2 · 3 + 3b(a+ c) + a(a+ 1)/2 + a · c+ c(c+ 1)/2 · (2 + ε).

An optimum solution tests and schedules first all 0-length jobs and then executes the
remaining jobs without tests. The objective value is

OPT = a(a+ 1)/2 + a(b+ c) + b(b+ 1)/2 · 2 + 2bc+ c(c+ 1)/2 · (2 + ε).

Simple transformation shows that Alg ≤ 2 ·OPT is equivalent to

2ab+ 2c2 ≤ a2 + b2 + a+ b+ c(c+ 1)(2 + ε) ⇔ 0 ≤ (a− b)2 + a+ b+ c2ε+ c(2 + ε),

which is obviously satisfied and the theorem follows. J

3.2 Deterministic lower bound
In this section we give a lower bound on the competitive ratio of any deterministic algorithm.
The instances constructed by the adversary have a very special form: All jobs have the same
upper limit p̄, and the processing time of every job is either 0 or p̄.

Consider instances of n jobs with uniform upper limit p̄ > 1, and consider any deterministic
algorithm. We say that the algorithm touches a job when it either tests the job or executes
it untested. We re-index jobs in the order in which they are first touched by the algorithm,
i.e., job 1 is the first job touched by the algorithm and job n is the last. The adversary fixes
a fraction δ ∈ [0, 1] and sets the processing time of job j, 1 ≤ j ≤ n, to:

pj =
{

0 , if j is executed by the algorithm untested, or j > δn

p̄ , if j is tested by the algorithm and j ≤ δn

ITCS 2018
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Figure 3 Lower bound construction.

A job j is called short if pj = 0 and long if pj = p̄. Let j0 be the smallest integer that
is greater than δn. Job j0 is the first of the last (1 − δ)n jobs, which are short no matter
whether the algorithm tests them or not.

We assume the algorithm knows p̄ and δ, which can only improve the performance of the
best-possible deterministic algorithm. Note that with δ and p̄ known to the algorithm, it has
full information about the actions of the adversary. Nevertheless, it is still non-trivial for an
algorithm to decide for each of the first δn jobs whether to test it (which makes the job a
long job, and hence the algorithm spends time p̄ + 1 on it while the optimum executes it
untested and spends only time p̄) or to execute it untested (which makes it a short job, and
hence the algorithm spends time p̄ on it while the optimum spends only time 1).

Let us first determine the structure of the schedule produced by an algorithm that achieves
the best possible competitive ratio for instances created by this adversary, as displayed in
Figure 3.

I Lemma 7. The schedule of a deterministic algorithm with best possible competitive ratio
has the following form, where λ, ν ≥ 0 and ν + λ ≤ δ: The algorithm first executes νn jobs
untested, then tests and executes λn long jobs, then tests (δ − ν − λ)n long jobs and delays
their execution, then tests and executes the remaining (1− δ)n short jobs, and finally executes
the (δ − ν − λ)n delayed long jobs that were tested earlier.

The cost of the algorithm in dependence on ν, λ, δ and p̄ can now be expressed as:

Alg(ν, λ, δ, p̄) = n2(ν2

2 p̄+ νp̄(1− ν) + λ2

2 (1 + p̄) + λ(1 + p̄)(1− ν − λ)

+ (δ − ν − λ)(1− ν − λ) + (1− δ)2

2 + (1− δ)(δ − ν − λ) + (δ − ν − λ)2

2 p̄
)

+O(n)

= n2

2 (1 + 2δ(1− νp̄) + δ2(p̄− 1) + 2ν(ν + p̄− 2) + λ2 + 2λ(ν + p̄− 1− δp̄)) +O(n)

The optimal schedule first tests and executes the (ν+1−δ)n short jobs and then executes the
(δ − ν)n long jobs untested. Hence, the optimal cost, which depends only on ν, δ and p̄, is:

Opt(ν, δ, p̄) = n2
(

(ν + 1− δ)2

2 + (ν + 1− δ)(δ − ν) + (δ − ν)2

2 p̄

)
+O(n)

= n2

2 (1 + (δ − ν)2(p̄− 1)) +O(n)

Let Alg′(ν, λ, δ, p̄) = limn→∞
1
n2 Alg(ν, λ, δ, p̄) and Opt′(ν, δ, p̄) = limn→∞

1
n2 Opt(ν, δ, p̄).

As the adversary can choose δ and p̄, while the algorithm can choose ν and λ, the value

R = max
δ,p̄

min
ν,λ

Alg′(ν, λ, δ, p̄)
Opt′(ν, δ, p̄)
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gives a lower bound on the competitive ratio of any deterministic algorithm in the limit for
n→∞. By making n sufficiently large, the adversary can create instances with finite n that
give a lower bound that is arbitrarily close to R.

The exact optimization of δ and p̄ is rather technical as it involves the optimization of
rational functions of several variables. The choices δ = 0.6306655 and p̄ = 1.9896202 give a
lower bound of 1.854628. (The fully optimized value of R is less than 1.1 · 10−7 larger.)

I Theorem 8. No deterministic algorithm can achieve a competitive ratio below 1.854628.
This holds even for instances with uniform upper limit where each processing time is either 0
or equal to the upper limit.

4 Randomized Algorithms

4.1 Algorithm Random
I Algorithm (Random). The algorithm has parameters 1 ≤ T ≤ E and works in 3 phases.
First it executes all jobs with p̄j < T without testing in order of increasing p̄j. Then it tests
all jobs with p̄j ≥ T in uniform random order. Each tested job j is executed immediately
after its test if pj ≤ E and is deferred otherwise. Finally all deferred jobs are executed in
order of increasing processing-time.

We analyze the competitive ratio of Random, and optimize the parameters T,E such
that the resulting competitive ratio is T .

I Theorem 9. The competitive ratio of the algorithm Random is at most 1.7453.

Proof sketch. By Lemma 1 we restrict to instances with p̄j ≥ T for all jobs. Then, the
schedule produced by Random can be divided into two parts, see Figure 4. Part (1) contains
all tests, of which those that yield processing time pj at most E are immediately followed
by the job’s execution. Part (2) contains all jobs that are tested and have processing time
larger than E. These jobs are ordered by increasing processing time. Jobs in the first part
are completed in an arbitrary order.

Furthermore, we can assume p̄j = max{pj , T} for all jobs. Reducing p̄j to this value
does not change the cost or behavior of Random, but may decrease the cost of Opt. We
make extensive use of Proposition 2 to show that the worst-case instance consists of only 4
types of jobs. As a result the adversary chooses fractions α, β, γ ≥ 0 (of total sum at most 1)
describing the following instance.

A 1− α− β − γ fraction of the jobs have p̄j = T and pj = 0.
An α fraction of the jobs have p̄j = T and pj = T .
A β fraction of the jobs have p̄j = E and pj = E.
A γ fraction of the jobs have p̄j = E + ε and pj = E + ε for some arbitrarily small ε > 0.

In this setting the cost of Random as well as the optimal cost can be expressed as a
function in α, β, γ, T,E, n each consisting of two parts: one multiple of n2 and the other
multiple of n. We start to analyze the ratio only for the first part, and verify that the ratio
also holds for the second part.

For the analysis we consider the expression g := T ·Opt−Alg which is non-negative
iff the ratio is at most T . Hence the adversary chooses fractions α, β, γ which minim-
ize g. Our general approach is therefore to identify local minima for g inside the polytope
{(α, β, γ)|α, β, γ ≥ 0, α+β+γ ≤ 1}. This is done by standard second order analysis with the
help of Mathematica, distinguishing the cases when such a minimum lies in the inner region

ITCS 2018
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Figure 4 Worst-case analysis of the algorithm Random.

of the polytope, or on one of the 4 triangular shaped facets or on one of the 6 one-dimensional
edges. Each of these minima generates inequalities for T,E, generated by g ≥ 0, which the
algorithm needs to respect if the ratio is to be at most T in all cases. Our proof identifies
the critical inequalities, and optimizes T,E for them, obtaining algebraic values, which are
approximately T ≈ 1.7453 and E ≈ 2.8609. J

4.2 Lower bound for randomized algorithms
In this section we give a lower bound on the best possible competitive ratio of any randomized
algorithm against an oblivious adversary. We do so by specifying a probability distribution
over inputs and proving a lower bound on E[Alg]/E[Opt] that holds for all deterministic
algorithms Alg. By Yao’s principle [14, 1] this gives the desired lower bound.

The probability distribution over inputs with n jobs has a constant parameter 0 < q < 1
and is defined as follows: Each job j has upper limit p̄j = 1/q > 1, and its processing time
pj is set to 0 with probability q and to 1/q with probability 1− q. We show the expected
optimal cost is

E[Opt] = n2

2

(
1
q

+ 3q − 2− q2
)

+O(n).

We determine the algorithm cost by induction. With a case distinction on how the algorithm
handles the first job, if it tests or executes it, we show the expected algorithm cost is at least
E[Alg(n)] ≥ n2

2q . For q = 1− 1/
√

3 ≈ 0.4227, this yields a lower bound of 1.6257 by Yao’s
principle.

I Theorem 10. No randomized algorithm can achieve a competitive ratio less than 1.6257.

5 Deterministic Algorithms for Uniform Upper Limits

5.1 An improved algorithm for uniform upper limits
In this section we present an algorithm for instances with uniform upper limit p̄ that achieves
a ratio strictly less than 2. We present a new algorithm Beat that performs well on instances
with upper limit roughly 2, but its performance becomes worse for larger upper limits. Thus,
in this case we employ the algorithm Threshold presented in Section 3.1.

To simplify the analysis, we consider the limit of Alg(I)/Opt(I) when the number n of
jobs approaches infinity. We say that an algorithm Alg is asymptotically ρ∞-competitive or
has asymptotic competitive ratio at most ρ∞ if limn→∞ supI Alg(I)/Opt(I) ≤ ρ∞.

I Algorithm (Beat). The algorithm Beat balances the time testing jobs and the time
executing jobs while there are untested jobs. A job is called short if its running time is at
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BEAT:

tested and executedOPT:

all long jobs tested,
some long jobs executed

short jobs with pj = 0

short jobs tested
and executed

delayed long
jobs executed

short jobs with pj = E and
long jobs executed untested

Figure 5 Structure of schedules produced by BEAT and OPT.

most E = max{1, p̄− 1}, and long otherwise. Let TotalTest denote the time we spend testing
long jobs and let TotalExec be the time long jobs are executed. We iterate testing an arbitrary
job and then execute the job with smallest processing time either, if it is a short job, or if
TotalExec+pk is at most TotalTest. Once all jobs have been tested, we execute the remaining
jobs in order of non-decreasing processing time.

We make a structural observation about the algorithm schedule for a worst-case instance.

I Lemma 11. The adversary gives jobs with pj ∈ {0, E, p̄} and at most one job with
pj ∈ (E, p̄) in order of decreasing pj.

Consequently, the schedule produced by Beat and the optimal schedule display a clear
structure, which we depict in Figure 5.

We prove that the asymptotic competitive ratio of Beat for p̄ < 3 is at most

ρBEAT∞ =
1 + 2(−2 + p̄)p̄+

√
(1− 2p̄)2(−3 + 4p̄)

2(−1 + p̄)p̄ ,

which is a function decreasing in p̄.
For small upper limit we can execute each job without test. Then there is a worst-case

instance where all jobs have processing time pj = 0. The optimal schedule tests each job
only if the upper limit p̄ is larger than 1 and executes it immediately. For p̄ < 1 this means
the competitive ratio is 1 and otherwise it is p̄, which monotonically increases. Thus, we
choose a threshold T1 ≈ 1.9338 for p̄, deciding if we run jobs untested or apply Beat. T1 is
the fixpoint of the function ρBEAT∞ .

For upper limit p̄ > 3, the performance behavior of Beat changes and the asymptotic
competitive ratio increases. Thus, we employ the algorithm Threshold for large upper limits.
Recall that for p̄ > 2 Threshold tests all jobs, executes those with pj ≤ 2 immediately
and defers the other jobs. By Lemma 4, there is a worst-case instance with short jobs that
have processing time either 0 or 2. Moreover, we argue that in a worst case long jobs have
processing time p̄j = p̄ and that no long job is tested in an optimal solution. This allows us
to prove

ρTHRESH∞ =
{
−3+p̄+

√
−15+p̄(18+p̄)

2(p̄−1) if p̄ ∈ (2, 3)√
3 ≈ 1.73 if p̄ ≥ 3.

The function for small p̄ is a monotone function decreasing from 2 to
√

3 in the limits for
p̄ ∈ (2, 3). We choose a threshold for p̄, where we change from applying Beat to employing
Threshold at T2 ≈ 2.2948, the crossing point of the two functions describing the competitive
ratio of Beat and Threshold in (2, 3).

I Algorithm. Execute all jobs without test, if the upper limit p̄ is less than T1 ≈ 1.9338.
Otherwise, if the upper limit p̄ is greater than T2 ≈ 2.2948, execute the algorithm Threshold.
For all upper limits between T1 and T2, execute the algorithm Beat.
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Figure 7 The schedule produced by UTE and the optimal schedule.

The function describing the asymptotic competitive ratio depending on p̄ is displayed in
Figure 6. Its maximum is attained at T1, which is a fixpoint. Thus we have

I Theorem 12. The asymptotic competitive ratio of our algorithm is ρ∞ = T1 ≈ 1.9338,
which is the only real root of 2p̄3 − 4p̄2 + 4p̄− 1−

√
(1− 2p̄)2(4p̄− 3).

5.2 Nearly tight deterministic algorithm for extreme uniform instances
We present a deterministic algorithm for the class of extreme uniform instances, that is
almost tight for the instance that yields the deterministic lower bound. An extreme uniform
instance consists of jobs with uniform upper limit p̄ and processing times in {0, p̄}. Our
algorithm UTE attains asymptotic competitive ratio ρ∞ ≈ 1.8668 for this class of instances.

I Algorithm (UTE). If the upper limit p̄ is at most ρ, then all jobs are executed without
test. Otherwise, all jobs are tested. The first max{0, β} fraction of the jobs are executed
immediately after their test. The remaining fraction of the jobs are executed immediately
after their test if they have processing time 0 and are delayed otherwise, see Figure 7. The
parameter β is defined as

β = 1− p̄+ p̄2 − ρ+ 2p̄ρ− p̄2ρ

1− p̄+ p̄2 − ρ+ p̄ρ
. (1)

I Theorem 13. The competitive ratio of UTE is at most ρ = 1+
√

3+2
√

5
2 ≈ 1.8668.
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Proof sketch. An instance is defined by the job number n, an upper limit p̄ and a fraction
γ such that the first 1− γ fraction of the jobs tested by UTE have processing time p̄, while
the jobs in the remaining γ fraction have processing time 0. The algorithm chooses β so as
to have the smallest ratio ρ.

First we observe that there is a value p∗ such that β ≥ 0 only when p̄ ≤ p∗. Then we
analyze the competitive ratio of UTE, distinguishing the cases p̄ ≤ ρ (covered by Lemma 1),
p̄ ≥ p∗ and p̄ ≤ p∗. The last case is furthermore subdivided into cases γ ≥ 1−β and γ ≤ 1−β.
For each of these cases we use first and second order analysis to determine the worst values
p̄ and γ for the ratio, and the best response β the algorithm can choose, optimizing β and ρ
on the way, and obtaining the claimed values. J

I Remark. The deterministic lower bound 1.8546 in Theorem 8 uses the upper limit p̄ ≈ 1.9896.
Plugging this choice of p̄ into a precise form of the competitive ratio which we obtained in the
proof of the theorem, we can show that UTE has asymptotic competitive ratio ρ∞ ≈ 1.8552
on this instance. This is almost tight.

6 Optimal Testing for Minimizing the Makespan

We consider scheduling with testing with the objective of minimizing the makespan, i.e., the
completion time of the last job. For this problem we give the best possible competitive ratio
for deterministic and randomized algorithms. The key insight is that for any algorithm that
treats each job independent of its position in the schedule, there is a worst-case instance
containing only a single job. The reason is that the execution of a job (possibly including
testing) has a linear contribution to the makespan.

I Theorem 14. Let ϕ ≈ 1.618 be the golden ratio. Testing each job j if and only if p̄j > ϕ

is an algorithm with competitive ratio ϕ. This is best possible for deterministic algorithms.

I Theorem 15. The randomized algorithm that tests each job with p̄j > 1 with probability
1− 1/(p̄2

j − p̄j + 1) has competitive ratio 4/3. No randomized algorithm can achieve a better
competitive ratio against an oblivious adversary.

7 Conclusion

In this paper we have introduced an adversarial model of scheduling with testing where a
test can shorten a job but the time for the test also prolongs the schedule, thus making it
difficult for an algorithm to find the right balance between tests and executions. We have
presented upper and lower bounds on the competitive ratio of deterministic and randomized
algorithms for a single-machine scheduling problem with the objective of minimizing the sum
of completion times or the makespan. An immediate open question is whether it is possible
to achieve competitive ratio below 2 for minimizing the sum of completion times with a
deterministic algorithm for arbitrary instances. Further interesting directions for future work
include the consideration of job-dependent test times or other scheduling problems such as
parallel machine scheduling or flow shop problems. More generally, the study of problems
with explorable uncertainty in settings where the costs for querying uncertain data directly
contribute to the objective value is a promising direction for future work.
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