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Abstract We study the problems of non-preemptively scheduling and packing mal-
leable and parallel tasks with precedence constraints to minimize the makespan. In
the scheduling variant, we allow the free choice of processors; in packing, each task
must be assigned to a contiguous subset. Malleable tasks can be processed on differ-
ent numbers of processors with varying processing times, while parallel tasks require
a fixed number of processors.

For precedence constraints of bounded width, we resolve the complexity status
of the problem with any number of processors and any width bound. We present an
FPTAS based on Dilworth’s decomposition theorem for the NP-hard problem vari-
ants, and exact efficient algorithms for all remaining special cases. For our positive
results, we do not require the otherwise common monotonous penalty assumption on
the processing times of malleable tasks, whereas our hardness results hold even when
assuming this restriction. We complement our results by showing that these problems
are all strongly NP-hard under precedence constraints which form a tree.
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1 Introduction

Parallelism plays a key role in high performance computing. The apparent need for
adequate models and algorithms for scheduling parallel task systems has attracted
significant attention in scheduling theory over the past decade (Drozdowski 1996;
Leung 2004). Several models have been considered, among which scheduling mal-
leable tasks as proposed in Turek et al. (1992) is an important and promising model
(Jansen and Zhang 2006).

In the problem of scheduling malleable tasks, we are given a set J = {1,2, . . . , n}
of tasks and m identical parallel processors. The tasks are malleable, which means
that the processing time of a task j ∈ J is a function pj (αj ) depending on the number
of processors αj ∈ N allotted to it. The tasks must be processed non-preemptively,
respecting precedence constraints given by a partial order (J,≺): For any i, j ∈ J ,
let i ≺ j denote that task i must be completed before task j starts processing. Two
tasks are called incomparable if neither i ≺ j nor j ≺ i, otherwise, they are called
comparable. The width ω of a partial order is the maximum number of pairwise
incomparable tasks, that is, the maximum antichain.

An allotment (αj )j∈J and an assignment of start times σj ≥ 0 for each task j ∈ J

establish a feasible schedule if the precedence constraints are respected and at no
point in time the number of required processors exceeds the number of available pro-
cessors m. Any non-overlapping assignment of jobs to particular machines is then
feasible. The goal is to find a feasible schedule of minimum total length, called
makespan. We assume throughout the paper that ω ≥ 2 and m ≥ 2 since the prob-
lem becomes trivial otherwise.

Virtually all previous literature on malleable scheduling with precedence con-
straints, requires the monotonous penalty assumption, which ensures that for any
malleable task j , its processing time function pj (αj ) is non-increasing, and its work
function αjpj (αj ) is non-decreasing. In this work, we abandon this restriction, such
that an arbitrary set of feasible allotments can be prescribed (by simply setting the
task duration for forbidden allotments to some large constant).

The special situation where one fixed allotment is given and only start times for
the tasks are sought corresponds to the well-studied problem of scheduling parallel
tasks, see Drozdowski (1996), Leung (2004) for an overview. Parallel tasks cannot
be modeled in malleable scheduling when assuming monotonous penalties, as this
restriction prohibits enforcing a fixed allotment by appropriate processing time func-
tions. In our model, however, parallel task scheduling becomes a special case as long
as m is polynomially bounded in the input. This assumption is reasonable and quite
common, see Jansen and Thöle (2008). It is necessary at this point, because the in-
put encoding of the malleable task scheduling problem is polynomial in m, while the
input of a parallel task scheduling problem is polynomial in logm.

We also consider the contiguous variant of the malleable scheduling problem in
which we require that a feasible mapping of tasks to processors exists such that each
task is processed on a subset of processors with consecutive indices. That such a
schedule is desirable in certain applications is mentioned already in Turek et al.
(1992). Contiguously scheduling parallel tasks corresponds to strip packing, i.e., the
problem of packing rectangles in a strip of width one such that the packing height is
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minimized, see e.g. Lodi et al. (2002). More generally, we define the discrete mal-
leable strip packing problem as strip packing with malleable rectangles: For strip
width m, each rectangle j may have a width αj ∈ {1, . . . ,m}, and the height of j is
a function depending on αj . Our results for malleable scheduling also hold for this
case of malleable packing.

1.1 Related work

We commence our overview of previous work with scheduling parallel tasks before
moving on to malleable scheduling. For each of the problems, we focus on results for
different classes of precedence constraints, contrasting contiguous to non-contiguous
approaches.

Parallel scheduling A remarkable amount of literature deals with scheduling par-
allel tasks, see Drozdowski (1996), Leung (2004) for an overview. For independent
tasks, factor 2 approximation algorithms are known for the non-contiguous (Garey
and Graham 1975) as well as the contiguous case, i.e., strip packing (Schiermeyer
1994; Steinberg 1997). When the number of machines is polynomial in the input size,
the approximation result can be improved to 3/2 + ε, ε > 0, in the contiguous case,
and the non-contiguous variant admits even a polynomial time approximation scheme
(Jansen and Thöle 2008). Furthermore, Duin and Sluis (2006) investigate the prob-
lem of finding a contiguous processor assignment for a given parallel task schedule
in the context of assigning check-in counters at airports; they call it adjacent resource
scheduling.

In the presence of precedence constraints, most results have been obtained in the
context of strip packing. Augustine et al. (2009) consider the case of arbitrary prece-
dence constraints; they present a factor Θ(logn) approximation. As lower bounds,
they use the longest chain, i.e., the largest set of pairwise comparable tasks, and the
total volume to be packed. Since these bounds immediately apply for non-contiguous
scheduling, the approximation guarantee carries over. Moreover, the authors pro-
vides a packing instance for which the gap between the optimal value and both lower
bounds is indeed logn, which indicates that new ideas and bounds are necessary for
improving on this performance guarantee in the general case.

Abandoning contiguousness, the special case of chain precedence constraints is
considered in Błażewicz and Liu (1996). Therein, Błażewicz and Liu show that
scheduling unit size parallel tasks with precedence constraints that form chains is
NP-hard already for three processors. Assuming monotonously increasing (decreas-
ing) processing times along chains, they give polynomial-time algorithms.

Malleable scheduling Quite some research has been dedicated to malleable schedul-
ing for independent tasks, see Belkhale and Banerjee (1990), Du and Leung (1989),
Turek et al. (1992), Ludwig and Tiwari (1994), Mounie et al. (1999, 2008), Jansen
and Porkolab (2002), Jansen (2004). Notably, Turek et al. (1992) were the first to de-
scribe a general method to employ algorithms for independent parallel tasks to obtain
similar results for the malleable case. When using a contiguous parallel scheduling
algorithm, the contiguousness of solutions carries over to malleable tasks.
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In the precedence constrained case, approximation results rely crucially on the
abovementioned monotonous penalty assumption and do not yield contiguous so-
lutions. Interestingly, this allows for results much superior to the case of parallel
tasks. For general precedence constraints, Lepère et al. (2002b) provide an approx-
imation algorithm with performance guarantee 3 + √

5 ≈ 5.236. For special cases,
such as series-parallel precedence constraints and such of bounded width, they prove
a ratio of (3 + √

5)/2 ≈ 2.618 in the same paper, improving on an earlier (4 + ε)-
approximation for trees in Lepère et al. (2002a). Jansen and Zhang (2006) consider
the case of general precedence constraints and provide an algorithm with performance
guarantee ≈ 4.730598, which they show to be asymptotically tight.

When contiguousness is required, the approximation factor of Θ(logn) for par-
allel tasks with arbitrary precedence constraints in Augustine et al. (2009) can be
transferred to malleable task scheduling if the monotonous penalty assumption holds.
This has been shown in Günther (2008) using techniques from Lepère et al. (2002b),
Jansen and Zhang (2006).

1.2 Our results

We derive a fully polynomial-time approximation scheme (FPTAS) for scheduling
malleable tasks under precedence constraints of bounded width ω in Sect. 2. As we
do not require monotonous penalties, our FPTAS also covers the case of parallel
tasks. We are not aware of any constant factor approximation for scheduling parallel
tasks with precedence constraints, not even for special classes of precedence con-
straints. The previously best known approximation ratio for malleable tasks without
precedence constraints was (3 + √

5)/2 ≈ 2.618 under the restriction to monotonous
penalty functions (Lepère et al. 2002b). Our algorithm is a dynamic programming
scheme based on Dilworth’s well-known decomposition theorem (Dilworth 1950)
which has been successfully used in scheduling theory (Grigoriev and Woeginger
2004; Lepère et al. 2002b; Steiner 1990; Verriet 1997).

For the special case ω = m = 2, we provide an efficient algorithm that solves the
malleable scheduling problem to optimality in Sect. 3. In the special case of parallel
tasks, it can be extended to yield an efficient exact algorithm for ω = 2 and any m.

We complement our positive results by showing in Sect. 4 that scheduling mal-
leable tasks becomes NP-hard for ω ≥ 3 or m ≥ 3, and scheduling parallel tasks is
NP-hard when ω ≥ 3. (Recall that we assume m and ω to be at least 2 since the prob-
lem is trivial otherwise.) Thus, our algorithms are the best one can hope for in terms
of approximation guarantee, unless P = NP. Furthermore, we resolve the complex-
ity question for precedence constraints which form trees by showing that malleable
and parallel scheduling is NP-hard even on caterpillars, a special case of trees that
is composed of a path and leaves only, for any m. This complexity question was left
open in Lepère et al. (2002a, 2002b).

In all cases, our algorithms can be modified to yield contiguous solutions, as we
argue in Sect. 5. Hence, they also solve the corresponding classical and malleable
strip packing problems. In the FPTAS for classical strip packing, we require that
the width of the strip m is polynomially bounded (see e.g. also Jansen and Thöle
2008). We are not aware of any previous constant factor approximation for classical
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Table 1 Algorithms and complexity results for scheduling parallel and malleable tasks under precedence
constraints of bounded width ω, and such forming a caterpillar, i.e., a special tree. The cases for which there
is an FPTAS are also shown to be NP-hard, for the polynomial cases efficient exact algorithms are given.
Identical results hold for the case when schedules are required to be contiguous, i.e., strip packing, where
only for the FPTAS in the case of parallel tasks and ω > 2, we need the common additional assumption
that m is polynomial in the input size

strip packing under special precedence constraints. The closest previous result is the
factor Θ(logn) approximation for arbitrary precedence constraints in Augustine et
al. (2009), Günther (2008).

Unlike most previous algorithms for malleable scheduling, none of our algorithms
requires the monotonous penalty assumption on processing times. On the other hand,
our hardness results hold even when assuming this restriction. Our results are sum-
marized in Table 1.

2 A fully polynomial-time approximation scheme (FPTAS)

Given a scheduling instance with precedence constraints of width bounded by a con-
stant ω, the number of tasks processed concurrently in a feasible schedule can never
exceed ω. Moreover, any maximal set A of incomparable tasks partitions the set of
all tasks into two subsets containing tasks that must be processed before, respectively
after, some task in A. We exploit this structure to obtain an exact dynamic program-
ming algorithm with pseudo-polynomial running time. Then, we show how to turn
this algorithm into an FPTAS.

2.1 Dynamic programming algorithm (DP)

The structure of our dynamic program is based on a correlation between feasible sub-
schedules and ideals of orders as described in Möhring (1989). An ideal I of (J,≺)

is a subset of J such that every task of I implies all its predecessors to be elements
of I as well. In order to respect precedence constraints, every initial part of a feasible
schedule must consist of a subset of tasks fulfilling the ideal property. Our dynamic
program will construct feasible schedules by finding paths in a directed graph on
ideals. Reaching an ideal I ′ from I ⊂ I ′ will correspond to feasibly extending a sub-
schedule by the tasks in I ′ \ I .

Utilizing Dilworth’s Decomposition Theorem (Dilworth 1950), which states that
for any partial order (J,≺) of width ω, there exists a partition of (J,≺) into ω chains
C1, . . . ,Cω, we can represent ideals as follows. For a given chain decomposition
C1, . . . ,Cω, every ideal I of (J,≺) can be described by an ω-tuple (Ii)i=1,...,ω , where
component Ii indicates that the first Ii tasks of chain Ci are contained in I . Thus, the
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number of distinct ideals is bounded by nω. Such a chain decomposition can be found
in polynomial time, see e.g. Fulkerson (1956). To simplify notation, we identify Ii

with the Ii -th task of chain Ci , and we denote Ii ’s processing time by pi(·).
A state in our dynamic program is a triple [I,α,C] specifying an ideal I repre-

sented by its front tasks I1, . . . , Iω, as well as an allotment vector α = (αi)i=1,...,ω

and a vector of completion times C = (Ci)i=1,...,ω for the front tasks of I . This infor-
mation also defines start times σi := Ci − pi(αi) for all front tasks (Ii)i=1,...,ω . We
call a state valid, if the number of processors used by its front tasks does not exceed
the number of available processors m at any completion time Ci . If Ii = 0, no task
of chain Ci is contained in I , and we set αi and Ci to 0. We call the particular state
	 := [∅,0,0] start state and every state [I,α,C] with I = J end state.

Every feasible subschedule has a representation as a state defined by the allotment
values and the completion times of its front tasks. We establish a state graph G by
linking two valid states F = [I,α,C], F ′ = [I ′, α′,C′] by an arc (F,F ′), if F ′ is an
extension of F by one task j with feasible αj and Cj . More formally, the conditions
for inserting the arc are:

1. The ideals differ only in one component i, and I ′
i = Ii + 1. All other components

of I ′, α′ and C′ remain equal.
2. The start time σ ′

i of I ′
i in F ′ respects precedence constraints, i.e., σ ′

i ≥ Cj for all
front tasks (Ij )j=1,...,ω with Ij ≺ I ′

i .
3. The new task starts no earlier than the other front tasks, i.e., σ ′

i ≥ σ ′
j for all j =

1, . . . ,ω.

Note, that the validity of a state as well as conditions 1–3 can be checked in constant
time O(ω2).

Condition 1 ensures that across a path P in G from 	 to an end state, every task
in J is assigned exactly one αj and σj . By conditions 2 and 3 and the ideal property
in the states, these start times respect all precedence constraints. Finally, the number
of available processors is never exceeded due to condition 3: When a new task j is
added to F with start time σj and allotment αj , all tasks in I active at or after σj are
front tasks, thus they are all taken into account when determining αj .

We have hence established that any path P in G corresponds to a feasible schedule,
and the makespan of such schedule is given by the largest Ci in the path’s end state.
We will now prove that the converse holds as well.

Lemma 1 Any feasible schedule S with makespan Cmax corresponds to a path in G

from 	 to an end state with latest completion time Cmax.

Proof Our argument is inductive, and we start with an arbitrary feasible sched-
ule S containing all tasks in J . The graph G obviously contains an end state
F ′ = [I ′, α′,C′], in which α′ and C′ respectively correspond to the allotment and
completion times of the last tasks in the chains C1, . . . ,Cω of an appropriate chain
decomposition of J . These tasks form the front tasks of F ′, defining ideal I ′ which
contains all tasks in J . Let j denote a front task of I ′ with the latest start time.
Now I := I ′ \ {j} is again an ideal. Thus, there is a valid state F = [I,α,C] in G

with α and C corresponding to the allotment values and completion times of the front
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tasks of I in S. By construction and the feasibility of S the states F and F ′ fulfill con-
ditions 1–3. Hence, G contains the edge (F,F ′). By induction, this yields the desired
result. �

With Lemma 1 we can find an optimal schedule as follows: We search for an end
state with minimum makespan reachable from the start state, and create the schedule
by backtracking.

The number of distinct ideals I is bounded by nω as already mentioned, whereas
the number of feasible allotments for each ideal does not exceed mω . The optimal
schedule has a makespan not larger than a simple schedule in which all jobs run
sequentially at some arbitrary allotment, say αj = m, for all j ∈ J . Thus, we have an
upper bound ZUB = np̄ with p̄ := max{pj (m) | j ∈ J }.

Thus, assuming w.l.o.g. that processing times are integral (by a standard scal-
ing argument), the task completion time can attain up to ZUB different values.
Hence, the number of valid states is bounded by nωmωZω

UB, which gives a bound
of O(n2ωm2ωZ2ω

UB) on the overall running time of the dynamic programming algo-
rithm.

Theorem 1 For any instance of malleable scheduling with precedence constraints
of width ω, algorithm DP finds a feasible solution with minimum makespan in time
O(n2ωm2ωZ2ω

UB).

2.2 FPTAS

In a fully polynomial time algorithm, we cannot afford to consider all values
in [0,ZUB] for possible completion times of front tasks. Using a standard round-
ing technique, this number can be reduced to be polynomially bounded in the input
size and 1/ε at the cost of increasing the makespan by at most a factor (1 + ε) in the
following way.

For a given parameter ε > 0, we partition the interval [0,ZUB] into subintervals of
size εZLB/n and restrict the possible completion times to the set E of endpoints of
the subintervals. This reduces the number of values for possible completion times to
nZUB/(εZLB) ≤ n2/ε, for some lower bound on the optimal value ZLB ≥ pmax. Now
we run algorithm DP′, which is a slightly modified variant of algorithm DP in which
we round the completion times in a state up to the nearest value in E. This restriction
increases an optimal solution value of DP by at most εZLB/n per task. Thus, DP′
finds a schedule with a makespan that exceeds the optimal makespan found by DP
by at most εZLB. We refer to Woeginger (2000) for an overview of techniques for
obtaining FPTASs.

Theorem 2 There exists an FPTAS for scheduling malleable tasks under precedence
constraints of bounded width ω. For any given ε > 0, a solution with makespan at
most (1 + ε) times the optimum can be computed in time O((n3/ε)2ωm2ω).

In case that a particular allotment is given (that is, we consider parallel tasks), the
number of states which need to be considered obviously reduces significantly. Here,
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the running time of DP drops to O(n2ωZ2ω
UB), and we obtain an FPTAS for scheduling

parallel tasks, even if m is not polynomially bounded.

Theorem 3 There exists an FPTAS for scheduling parallel tasks under precedence
constraints of bounded width ω. For any given ε > 0, a solution with makespan at
most (1 + ε) times the optimum can be computed in time O((n3/ε)2ω).

3 Optimally solvable special cases

The problem of scheduling malleable tasks is clearly optimally solvable in polyno-
mial time if either the number of processors is m = 1, or the width of the partial order
is ω = 1. Thus, we assume m,ω ≥ 2 from now on. We provide an efficient algorithm
for optimally scheduling malleable tasks in the special case m = ω = 2, and parallel
tasks for ω = 2 and any m. We prove NP-hardness of all remaining cases in Sect. 4.

Our algorithm is based on the idea of the dynamic program in Sect. 2.1 and the
following observations regarding optimal (sub)solutions for special allotments: Con-
sider a subset of tasks J ′ ⊆ J together with an allotment α′

j for all j ∈ J ′. We call
(J ′, α′) nice if α′ and the earliest possible start times

σ ′
j =

{
0 if j has no predecessor in J ′
maxi≺j,i∈J ′ {σi + pi(α

′
i )} otherwise

result in a feasible (sub)schedule. More intuitively, (J ′, α′) is nice if each task in
J ′ can start as soon as all its predecessors in (J,≺) have finished processing while
respecting the number of available processors. Calculating σ ′ and testing for niceness
can be done in polynomial time. The obtained makespan clearly coincides with a
longest chain in (J ′,≺) w.r.t. processing times under (α′

j )j∈J ′ . This is a lower bound
on the optimum of the corresponding scheduling instance (J ′, α′) where parallel tasks
with the fixed allotment α′ must be scheduled. Hence, we have the following.

Observation 1 If a set of jobs with given allotment (J ′ ⊆ J,α′) is nice, an optimal
schedule for (J ′, α′) can be found in polynomial time.

Since m ≥ 2, this applies in particular to the case when all tasks are alloted exactly
one processor and ω = 2, as precedence constraints alone prevent more than two tasks
from being processed concurrently.

Observation 2 If ω = 2 and m ≥ 2, any (J ′, α′) with α′
j = 1 for all j ∈ J ′ is nice.

Theorem 4 The problem of scheduling malleable tasks under precedence constraints
of width bounded by ω = 2 on m = 2 processors can be solved optimally in polyno-
mial time.

Proof For any optimal schedule, we refer to the optimal schedule resulting from shift-
ing all start times to the earliest possible point in time (without changing the struc-
ture of the schedule) as normalized. Any normalized optimal solution can be divided
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Fig. 1 Partitioning a
normalized schedule into nice
subschedules

into subsequent subschedules SJ ′ for subsets J ′ ⊆ J by splitting it whenever all pro-
cessors become unused simultaneously, i.e., a processor is idle or has just finished
processing a task. See Fig. 1 for an illustration.

The makespans of these subschedules add up to the makespan of the whole sched-
ule. Moreover, for each subschedule SJ ′ , either αj = 1 for all j ∈ J ′, or |J ′| = 1,
since all m = 2 processors are unused at the start and completion time of any j with
αj = 2.

We now define a state graph G whose nodes correspond to the (polynomially
many) ideals of (J,≺) as in Sect. 2.1, such that any solution of the above structure is
represented as a path in G—a shortest path in G will correspond to an optimal sched-
ule. We insert an edge from I to I ′ in G, if and only if I ⊂ I ′. Such an edge corre-
sponds to a subschedule SJ ′ for the tasks in J ′ := (I ′ \ I ) ⊆ J as follows. If J ′ forms
a chain in (J,≺), in particular, if |J ′| = 1, we set αj = arg min{pj (α) | α ∈ {1,2}}
for all j ∈ J ′ and define the corresponding optimal subschedule by concatenating the
tasks according to their precedence relations. Otherwise, we set αj = 1 for all j ∈ J ′
and compute an optimal subschedule for SJ ′ for J ′, α′

j according to Observation 2.
The lengths of the edges are set to the makespans of their subschedules.

Clearly, any path in G from ∅ to J defines a feasible schedule with a makespan
equal to the path length. Furthermore, any normalized optimal schedule is represented
as a path in G: For each of its subschedules SJ ′ , split as explained above, there are
ideals I , I ′ with J ′ = I ′ \ I connected by an edge. Moreover, for each of these J ′,
either αj = 1 for all j ∈ J ′, or |J ′| = 1. In both cases, edge lengths correspond to
optimal subschedules by the construction of G, hence the path corresponding to an
optimal schedule has length equal to its makespan. �

Using a similar idea as in the proof above, we can state a stronger result for the
special case of parallel tasks.

Theorem 5 The problem of scheduling parallel tasks under precedence constraints
of width ω = 2 can be solved optimally in polynomial time for any number of proces-
sors m.

Proof In contrast to the malleable case, we do not have to decide on an allotment for
each task, but merely assign a start time to it. Thus, the set of edges of the state graph
changes slightly. Now, an edge from an ideal I to ideal I ′ is inserted in G, if and only
if I ⊂ I ′, and J ′ := I ′ \ I with the input allotment is nice. The length of an edge is
set to the makespan of the corresponding optimal subschedule, which again can be
computed in polynomial time by Observation 1.

Again, each path in G clearly defines a feasible schedule, and it remains to show
that every normalized optimal schedule is represented by a path in G of the same
length. Consider a subschedule SJ ′ in a partition into subschedules as defined above.
Suppose there is a task j ∈ J ′ whose start time in SJ ′ is after σ ′

j . Then, task j must be

Author's personal copy



J Comb Optim (2014) 27:164–181 173

blocked by some task i using more than m−αj processors, and i is not a predecessor
of j . Hence, i and j are incomparable, and due to ω = 2, there can be no other task
incomparable to both i and j . Consequently, no task is running in parallel to i, so all
processors are unused when i finishes. This entails that i and j must be in different
subschedules, so J ′ with the input allotment is nice and G contains an edge of correct
length corresponding to SJ ′ . �

4 Hardness results

In this section we show that our algorithms in the previous sections are, in a sense,
best possible. We show that the problem is NP-hard, even under the monotonous
penalty assumption, when ω ≥ 3, m ≥ 2 (Theorem 6) or ω = 2, m ≥ 3 (Theorem 7),
where the first result holds for parallel tasks as well. We complement these results by
proving NP-hardness for precedence constraints that form a caterpillar, i.e., a special
tree. Recall that trees are a special case of series-parallel orders. This complexity
status was left open in previous work presenting approximation algorithms for trees
and generally series-parallel precedence constraints for malleable tasks (Lepère et al.
2002a, 2002b).

Theorem 6 The problem of scheduling malleable tasks with precedence constraints
of width bounded by a constant ω ≥ 3 on any fixed number of processors m ≥ 2 is
NP-hard, even under the monotonous penalty assumption.

Proof We give a reduction from the NP-complete PARTITION problem, see Garey
and Johnson (1979), to malleable scheduling problem with precedence constraints
forming three independent chains. This specific problem variant can be reduced to
any other problem with ω ≥ 3 and m ≥ 2 by adapting the number of processors
needed by tasks to achieve the processing times used in the reduction.

Consider an instance P of PARTITION: Given a set of values {vi}i=1,...,n with
V := ∑n

i=1 vi , does there exist a partition A1, A2 of {1, . . . , n} such that
∑

i∈A1
vi =∑

i∈A2
vi = V/2?

We construct an instance S of malleable scheduling, borrowing ideas from a reduc-
tion for scheduling with communication delays in Verriet (1997). Instance S consists
of 3n tasks to be scheduled on m = 2 processors. The precedence relations form three
chains {ai}i=1,...,n, {bi}i=1,...,n, and {ci}i=1,...,n of n tasks each. Suppose that the tasks
of each chain are ordered with respect to their indices, i.e., ai ≺ aj for all i < j . Each
node in chains {ai}i=1,...,n and {bi}i=1,...,n has processing time V for any processor
allotment. Each task i in chain {ci}i=1,...,n corresponds to element i of instance P

and has processing time vi independently of the processor allotment. Note that all
processing times obey the monotonous penalty assumption. The construction is illus-
trated in Fig. 2.

We prove that there is a feasible schedule for S with makespan at most nV + V/2
if and only if P is a yes-instance. Let A1, A2 be a partition satisfying

∑
i∈A1

vi =∑
i∈A2

vi = V/2, and let π(i) denote the index of the subset containing i. Consider
the schedule, in which all tasks ai are processed on the first processor, all tasks bi on
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Fig. 2 The three chains of jobs in an instance of malleable scheduling constructed from an instance of
PARTITION; all tasks’ processing times are oblivious of the allotment

Fig. 3 A feasible schedule corresponding to a certificate for a yes-instance of PARTITION. The work from
the chain of short tasks is distributed equally between the two processors. Long tasks are just long enough
to ensure short tasks can respect precedence constraints without gaps in the schedule

the second processor, and every task ci on processor π(i) placed between task ai−1

and ai respectively bi−1 and bi . More formally, we define the following start times
for all tasks:

σai
:=

∑
k∈A1,k≤i

vk + (i − 1)V ,

σbi
:=

∑
k∈A2,k≤i

vk + (i − 1)V ,

σci
:=

∑
k∈Aπ(i),k<i

vk + (i − 1)V .

Simple calculations show that no precedence relation is violated and that the number
of used processors never exceeds two. Thus, there exists a feasible schedule with
makespan nV + V/2 as illustrated in Fig. 3.

Now assume there is a schedule for S with makespan at most nV + V/2. Clearly,
each processor must handle exactly n tasks with processing time V ; these have to
be the tasks of chains {ai}i=1,...,n and {bi}i=1,...,n. Thus, on every processor there are
exactly V/2 time units left in the makespan for processing the remaining tasks of
chain {ci}i=1,...,n. Consequently, there must exist a partition for instance P . �

The reduction in the proof of Theorem 6 adapts naturally to the problem of
scheduling parallel tasks. Here, we simply fix the allotment for all tasks to one pro-
cessor.

Corollary 1 The problem of scheduling parallel tasks under precedence constraints
of width bounded by a constant ω ≥ 3 on any fixed number of processors m ≥ 2 is
NP-hard.

Theorem 7 The problem of scheduling malleable tasks with precedence constraints
of width ω = 2 is NP-hard on any fixed number of processors m ≥ 3, even under the
monotonous penalty assumption.
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Fig. 4 The two chains of malleable tasks constructed from a KNAPSACK instance with processing times
on one, two, and three processors. Every other element in each chain is oblivious of the allotment, while
for the remaining tasks, allotting only one processor increases their processing time according to their
knapsack value in one chain, and according to their knapsack weight in the other

Proof We give a reduction from an arbitrary instance of the NP-complete KNAPSACK

decision problem, see Garey and Johnson (1979), to the problem of scheduling two
independent chains of malleable tasks on m = 3 processors. It is easy to see that this
case can be reduced to any problem setting with m > 3 by adapting the number of
processors needed by tasks to achieve the processing times used in the reduction.

Let K denote an instance of KNAPSACK in a slightly modified formulation: Given
a set of values {vi}i=1,...,n, a set of weights {wi}i=1,...,n and numbers V and W , does
there exist a set A ⊆ {1, . . . , n} with total weight at most W , i.e.,

∑
i∈A wi ≤ W and

a complement valued at most V , i.e.,
∑

i /∈A vi ≤ V ? By a standard scaling argument
we may assume w.l.o.g. that V = W .

We construct a corresponding instance S of our scheduling problem as follows:
For each item i = 1, . . . , n, we introduce tasks ji and j̄i . All ji , and all j̄i respec-
tively, form a chain in the order of their indices. In each chain, between any two
consecutive tasks, there is an additional task hi , respectively h̄i , which has process-
ing time ph := nmaxi{vi,wi} for any allotment of processors. All tasks ji , j̄i have
the same processing time pb := 2ph on two and three processors; when processed
by a single processor, the processing time of task ji increases by vi , and the process-
ing time of task j̄i increases by wi , respectively; see Fig. 4 for an illustration. These
processing times clearly obey the monotonous penalty assumption.

We prove that the KNAPSACK instance K has a solution (is a yes-instance) if and
only if there is a schedule for S with makespan at most (n − 1)ph + npb + V .

Given a feasible set A for K we can construct a feasible schedule for S as fol-
lows: For every item i ∈ A we allot two processors to task ji and one processor to
task j̄i ; for every item i /∈ A, we proceed vice versa. The remaining tasks run on one
processor. We schedule every task directly after the completion of its predecessor,
i.e.,

σji
:= (i − 1)ph +

∑
k<i

pjk
(αjk

),

σhi
:= (i − 1)ph +

∑
k≤i

pjk
(αjk

).
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Fig. 5 A feasible schedule corresponding to a certificate for a yes-instance of KNAPSACK. Every other
task in each chain serves as a separator, guaranteeing the desired structure of the schedule. For the re-
maining tasks, out of each pair of parallel elements from the two chains, one has to be processed on one
processor only. This entails an increase in processing time for each pair, corresponding to either the weight,
or the value of an item. An increase by weight corresponds to packing, by value to leaving; the schedule
depicted corresponds to packing items two and three

Start times σj̄i
and σh̄i

are defined the same way. In this schedule, the processing of

task ji−1 is completed before the processing of task j̄i starts, i.e.,

σji−1 + pji−1(αji−1) = (i − 2)ph +
∑

k≤i−1

pjk
(αjk

)

= (i − 2)ph +
∑

k≤i−1

pb +
∑

k≤i−1,k /∈A

vk

≤ (i − 1)ph +
∑
k<i

pb ≤ σj̄i
.

This holds analogously for j̄i−1 and ji . Thus, there are never more than three proces-
sors in use and the schedule is feasible. Moreover, its makespan is

(n − 1)ph + npb + max

{∑
i /∈A

vi,
∑
i∈A

wi

}
,

which is at most (n − 1)ph + npb + V as depicted in Fig. 5.
Conversely, for a given schedule for S with makespan at most (n−1)ph +npb +V

we can construct a feasible set A for the KNAPSACK instance K . Suppose there are
two tasks ji and j̄i with disjoint processing intervals; w.l.o.g. let j̄i be processed
before ji . Then all predecessors of j̄i must be processed before j̄i and all successors
of ji must be processed after task ji . Thus, the makespan of the schedule is at least

npb + (n − 1)ph + pb > (n − 1)ph + npb + V.

Thus, for any two tasks ji or j̄i at least one of them must be processed on a single
processor.

Let A contain all items i that correspond to tasks j̄i using a single processor. It
is easy to verify that this set is a feasible solution to K . Given the makespan of the
schedule, we have that

(n − 1)ph + npb +
∑
i∈A

wi ≤ (n − 1)ph + npb + V,

which implies
∑

i∈A wi ≤ V . On the other hand,

(n − 1)ph + npb +
∑
i /∈A

vi ≤ (n − 1)ph + npb + V,

which results in
∑

i /∈A vi ≤ V . �
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Fig. 6 The instance of malleable scheduling constructed from an instance of 3-PARTITION; the prece-
dence constraints clearly form a caterpillar. All tasks ji and gi are oblivious of their allotment, while the
processing time of all ki and hi is halved when using two processors

Note that the use of malleable tasks in the reduction above is imperative—thus,
the proof does not carry over to the case of parallel tasks. This fits in with Corollary 5
where we have shown this case to be tractable for ω = 2 and any m.

We conclude our complexity investigations by showing that the scheduling prob-
lem is also NP-hard under precedence constraints that form a caterpillar, i.e., a special
tree, composed of a path and leaves only. This result still holds for parallel tasks or
when assuming monotonous penalties.

Theorem 8 The problem of scheduling malleable tasks with precedence constraints
that form a caterpillar is strongly NP-hard for every fixed m ≥ 2, even under the
monotonous penalty assumption.

Proof It suffices to consider the case m = 2, since again for any larger number of
processors, we can adapt the number of processors needed by tasks to achieve the
processing times used below. We give a reduction from an arbitrary instance P of
the strongly NP-complete 3-PARTITION decision problem, see Garey and Johnson
(1979). Such instance consists of natural numbers z, B and ai with

∑3z
i=1 ai = zB

and B/4 < ai < B/3 for all i = 1, . . . ,3z, and the question is whether there exists a
partition of {1, . . . ,3z} into z disjoint sets A1, . . . ,Az such that

∑
i∈Aj

ai = B for all
j = 1, . . . , z.

We construct the following instance S of malleable scheduling on two processors:
The set of tasks J contains two tasks ji , ki for all i = 1, . . . ,3z and two tasks gi , hi

for all i = 1, . . . , z with the following processing times with monotonous penalties:

pji
(1) = ai, pji

(2) = ai;
pki

(1) = 2B, pki
(2) = B;

pgi
(1) = B, pgi

(2) = B;
phi

(1) = 2B, phi
(2) = B.

We introduce the following precedence constraints, which obviously form a caterpil-
lar, see also Fig. 6:

k1 ≺ · · · ≺ k3z ≺ g1 ≺ h1 ≺ · · · ≺ gz ≺ hz, (1)

k1 ≺ j1, . . . , k3z ≺ j3z. (2)

We now argue that P is a yes-instance if and only if S has a solution with
makespan at most 5zB . Suppose there exists a partition of the ai as required. To
obtain a solution to S, we can first process all tasks ki on two processors each. Then,

Author's personal copy



178 J Comb Optim (2014) 27:164–181

Fig. 7 A feasible schedule corresponding to a certificate for a yes-instance of 3-PARTITION. The chain
formed jointly by tasks ki , gi , and hi ensures that the schedule can have no gaps if and only if tasks ji can
be partitioned into triplets with equal processing time

we alternately schedule one task gi on one processor, and one task hi on two proces-
sors. In parallel to each gi we schedule three tasks ji whose processing times belong
to the same subset Ax in the partition. This results in a schedule with makespan

3z∑
i=1

pki
(2) +

z∑
i=1

phi
(2) +

z∑
i=1

max

{
gi,

∑
k∈Ai

ak

}

= 3zB + zB + zB = 5zB,

as illustrated in Fig. 7.
Conversely, assume there exists a solution to S with makespan at most 5zB .

Tasks ki , gi , and hi jointly form a chain whose processing time must not exceed
the makespan. Consequently, all tasks ki and hi must run on two processors, and all
tasks of this chain must be scheduled one after the other with no gaps. So during the
makespan of 5zB , both processors are busy for time 4zB , and only one processor
remains available for time zB , namely in parallel to processing tasks gi . Now the
remaining tasks ji and gi must fit into the schedule without any gaps. This is only
possible if the set of tasks ji can be partitioned into B triplets with processing time z

each, which by construction is equivalent to P being a yes-instance. �

This reduction can be adapted to suit the case of parallel tasks: We simply fix the
allotment of all tasks ki and hi to two processors, and that of all tasks gi and ji to
one.

Corollary 2 The problem of scheduling parallel tasks with precedence constraints
that form a tree is NP-hard for every fixed m ≥ 2.

5 Scheduling on contiguous processors and strip packing

When we require each task to run on contiguous processors, an allotment (αj )j∈J

can be interpreted as associating a rectangle of width αj and height pj (αj ) with
each task j ∈ J . Optimally scheduling the tasks in J under this allotment amounts
to packing these rectangles into a strip of width m of minimum length (or height).
Hence, malleable scheduling on contiguous processors corresponds to strip packing
under discrete malleability. In the case of parallel tasks, contiguous scheduling is
equivalent to strip packing with strip width m and rectangle widths in {1, . . . ,m},
and any strip packing instance with rational data can be stated this way.

Figure 8 gives an example for the power of non-contiguous scheduling. It depicts
an optimal contiguous schedule on the left with makespan 7, and an optimal schedule
with non-contiguous assignment of tasks to processors with makespan 6 on the right,
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Fig. 8 A contiguous schedule
with optimal makespan 7 on the
left-hand side vs. a
non-contiguous schedule with
optimal makespan 6 on the
right-hand side

see also Fekete et al. (2006). It is not too hard to check that no feasible contiguous
processor assignment with makespan 6 is possible. This shows that the condition of
contiguousness is a proper restriction, see also Turek et al. (1992). Moreover, the
general problem of deciding whether a given feasible schedule is contiguous, i.e.,
whether it possesses a feasible contiguous mapping of tasks to processors, is NP-
hard in the strong sense. This follows from results in Duin and Sluis (2006) and was
independently shown in Günther (2008).

However, we argue in the following that all algorithms and reductions in this paper
can be adapted to yield contiguous processor assignments by construction. Thus, our
results also hold for the corresponding strip packing problems.

First, in order for the dynamic program from Sect. 2.1 to yield contiguous sched-
ules, we merely need to keep track of the distinct processors used by every task in
each state. This can be done by extending the definition of a state by (πi)i=1,...,ω

to [I,α,C,π], where πi defines the first processor that should be used by the front
task Ii . Thus, the contiguous set of processors [πi,πi +αi −1] will be assigned to Ii .

Moreover, we have to adapt the definition of a valid state regarding processor
usage: Instead of checking that the number of processors used by front tasks does
not exceed m, we now require that each front task Ii is the only front task using its
assigned processors at its completion time Ci . This condition is stronger than the
original, but can still be checked in O(ω2). Finally, in the construction of the state
graph G, we have to extend Condition 1 for inserting an arc between states F , F ′:
We now require additionally, that also the vector π remains the same in all but the
component corresponding to the chain from which a task is added to the schedule
when moving from F to F ′.

With this construction, an analog of the argumentation in Sect. 2.1 remains valid
for the case of contiguous schedules. However, the number of nodes in the graph
increases by a factor of mω. Hence, the FPTAS deduced remains valid only with a
running time increased by a factor of m2ω . In the case of parallel tasks, the num-
ber of nodes in the graph reduces again by a factor of mω , since each front task no
longer has ω valid allotment values αi , but only one. However, the distinct processor
assignments πi still need to be regarded, and m remains a factor in running time.
Consequently, for classical strip packing, our FPTAS yields polynomial running time
only when the strip width m is polynomial in the input size. In any case, this assump-
tion is quite common, see Jansen and Thöle (2008).

Corollary 3 There exists an FPTAS for finding an optimal contiguous schedule of
malleable tasks under precedence constraints of bounded width. For any given ε > 0,
a solution with makespan at most (1 + ε) times the optimum can be computed in time
O((n3/ε)2ωm4ω). Furthermore, there is an FPTAS for classical strip packing with
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integral rectangle widths and polynomially bounded m under precedence constraints
of bounded width. Here, the running time of a (1 + ε)-approximation for any ε > 0
reduces to O((n3/ε)2ωm2ω).

Next, observe that for m ≤ 2, any schedule is contiguous. Consequently, Theo-
rem 4 can be formulated for the contiguous case. Also, Theorem 5 remains valid
because for ω = 2 at most two parallel tasks can be processed concurrently. In this
case, we can easily find for any schedule obtained by Theorem 5 a mapping of jobs
to contiguous machines: Given the allotment αj and the start times of jobs j ∈ J , we
assign alternately the first and the last αj processors to job j considering the jobs in
non-decreasing order of start times.

Corollary 4 Optimal contiguous schedules on m processors under precedence con-
straints of width bounded by a constant ω can be found in polynomial time for mal-
leable tasks with ω = m = 2, and for parallel tasks with ω = 2 and arbitrary m.

Furthermore, the scheduling instances constructed in the reductions for Theo-
rems 6 and 8 only use m = 2 processors. Also, the scheduling instances arising from
the reduction for Theorem 7 clearly permit a contiguous schedule with the required
makespan if and only if they permit any such schedule. Consequently, all of our hard-
ness results carry over to the contiguous case.

Corollary 5 Even when assuming monotonous penalties, contiguous scheduling of
malleable and parallel tasks is NP-hard under precedence constraints which form a
caterpillar on m ≥ 2 processors, and under precedence constraints of width bounded
by a constant ω ≥ 3. For malleable tasks, it remains NP-hard for ω = 2 when m ≥ 3.

We close our investigations with an interesting open question regarding the dif-
ference between scheduling and packing. Figure 8 demonstrates that requiring con-
tiguous processors may increase the optimal makespan of a set of parallel tasks by as
much as 7/6 ≈ 1.167. It seems intriguing to determine the worst case ratio between
the makespans of optimal contiguous and non-contiguous schedules for a given in-
stance. For independent tasks, it can be bounded by two due to approximation algo-
rithms for the classical strip packing problem with this factor, analyzed using lower
bounds that also hold for non-contiguous scheduling, see Schiermeyer (1994), Stein-
berg (1997). Yet we conjecture the actual bound to be much lower.
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