
Randomization Helps Computing a Minimum
Spanning Tree under Uncertainty?

Nicole Megow1, Julie Meißner2, and Martin Skutella2

1 Center for Mathematics, Technische Universität München, Germany.
Email: nicole.megow@tum.de

2 Department of Mathematics, Technische Universität Berlin, Germany.
Email: {jmeiss,skutella}@math.tu-berlin.de

Abstract. We consider the problem of finding a minimum spanning tree
(MST) in a graph with uncertain edge weights given by open intervals on
the edges. The exact weight of an edge in the corresponding uncertainty
interval can be queried at a given cost. The task is to determine a possibly
adaptive query sequence of minimum total cost for finding an MST.
For uniform query cost, a deterministic algorithm with best possible
competitive ratio 2 is known [7].
We solve a long-standing open problem by showing that randomized
query strategies can beat the best possible competitive ratio 2 of deter-
ministic algorithms. Our randomized algorithm achieves expected com-
petitive ratio 1 + 1/

√
2 ≈ 1.707. This result is based on novel struc-

tural insights to the problem enabling an interpretation as a generalized
online bipartite vertex cover problem. We also consider arbitrary, edge-
individual query costs and show how to obtain algorithms matching the
best known competitive ratios for uniform query cost. Moreover, we give
an optimal algorithm for the related problem of computing the exact
weight of an MST at minimum query cost. This algorithm is based on
an interesting relation between different algorithmic approaches using
the cycle-property and the cut-property characterizing MSTs. Finally,
we argue that all our results also hold for the more general setting of
matroids. All our algorithms run in polynomial time.

1 Introduction

Uncertainty in the input data is an omnipresent issue in most real world planning
processes. The quality of solutions for optimization problems with uncertain
input data crucially depends on the amount of uncertainty. More information,
or even knowing the exact data, allows for significantly improved solutions (see,
e. g., [16]). It is impossible to fully avoid uncertainty. Nevertheless, it is sometimes
possible to obtain exact data, but it may involve certain exploration cost in
time, money, energy, bandwidth, etc. A classical application are estimated user
? This research was carried out in the framework of Matheon supported by Einstein
Foundation Berlin. The first two authors were additionally supported by the German
Science Foundation (DFG) under contract ME 3825/1.

demands that can be specified by undertaking a user survey, but this is an
investment in terms of time and/or cost.

In this paper we are concerned with fundamental combinatorial optimization
problems with uncertain input data which can be explored at certain cost. We
mainly focus on the minimum spanning tree (MST) problem with uncertain edge
weights. In a given graph, we know initially for each edge only an interval con-
taining the edge weight. The true value is revealed upon request (we say query)
at a given cost. The task is to determine a minimum-cost adaptive sequence of
queries to find a minimum spanning tree. In the basic setting, we only need to
guarantee that the obtained spanning tree is minimal and do not need to com-
pute its actual weight, i. e., there might be tree edges whose weight we never
query, as they appear in an MST independent of their exact weight. We measure
the performance of an algorithm by competitive analysis. For any realization of
edge weights, we compare the query cost of an algorithm with the optimal query
cost. This is the cost for verifying an MST for a given fixed realization.

As our main result we develop a randomized algorithm that improves upon the
competitive ratio of any deterministic algorithm. This solves an important open
problem in this area (cf. [4]). We also present the first algorithms for non-uniform
query costs and generalize the results to uncertainty matroids, in both settings
matching the best known competitive ratios for MST with uniform query cost.

Related work. The huge variety of research streams dealing with optimization
under uncertainty reflects its importance for theory and practice. The major
fields are online optimization [3], stochastic optimization [2], and robust opti-
mization [1], each modeling uncertain information in a different way. Typically
these models do not provide the possibility to influence when and how uncertain
data is revealed. Kahan [12] was probably the first to study algorithms for ex-
plicitly exploring uncertain information in the context of finding the maximum
and median of a set of values known to lie in given uncertainty intervals.

The MST problem with uncertain edge weights was introduced by Erlebach
et al. [7]. Their deterministic Algorithm U-RED achieves competitive ratio 2 for
uniform query cost when all uncertainty intervals are open intervals or trivial
(i. e., containing one point only). They also show that this ratio is optimal and
can be generalized to the problem of finding a minimum weight basis of a matroid
with uncertain weights [6]. According to Erlebach [4] it remained a major open
problem whether randomized algorithms can beat competitive ratio 2. The offline
problem of finding the optimal query set for given exact edge weights can be
solved optimally in polynomial time [5].

Further problems studied in this uncertainty model include finding the k-th
smallest value in a set of uncertainty intervals [9, 11, 12] (also with non-uniform
query cost [9]), caching problems in distributed databases [15], computing a
function value [13], and classical combinatorial optimization problems, such as
shortest path [8], finding the median [9], and the knapsack problem [10].

A generalized exploration model was proposed in [11]. The OP-OP model
reveals, upon an edge query, a refined open or trivial subinterval and might, thus,
require multiple queries per edge. They show that Algorithm U-RED [7] can be

2

adopted and still achieves competitive ratio 2. The restriction to open intervals is
not crucial as slight model adaptions allow to deal with closed intervals [11,12].

While most works aim for minimal query sets to guarantee exact optimal
solutions, Olsten and Widom [15] initiate the study of trade-offs between the
number of queries and the precision of the found solution. They are concerned
with caching problems. Further work in this vein can be found in [8, 9, 13].

Our contribution. After presenting some structural insights in Section 2, we
affirmatively answer the question if randomization helps to minimize query cost
in order to find an MST. In Section 3 we present a randomized algorithm with
tight competitive ratio 1.707, thus beating the best possible competitive ratio 2
of any deterministic algorithm. On the other hand, one can easily achieve a lower
bound of 1.5 for any randomized algorithm by considering a graph consisting of
two parallel edges with crossing uncertainty intervals, e.g., (1, 3) and (2, 4).

One key observation is that the minimum spanning tree problem under uncer-
tainty can be interpreted as a generalized online bipartite vertex cover problem.
A similar connection for a given realization of edge weights was established in [5]
for the related MST verification problem. In our case, new structural insights
allow for a preprocessing which suggests a unique bipartition of the edges for
all realizations simultaneously. Our algorithm borrows and refines ideas from a
recent water-filling algorithm for the online bipartite vertex cover problem [17].

In Section 4 we consider the more general non-uniform query cost model in
which each edge has an individual query cost. We observe that this problem can
be reformulated within a different uncertainty model, called OP-OP, presented
in [11]. The 2-competitive algorithm in [11] is a pseudo-polynomial 2-competitive
algorithm for our problem with non-uniform query cost. We design new direct
and polynomial-time algorithms that are 2-competitive and 1.707-competitive
in expectation. To that end, we employ a new strategy carefully balancing the
query cost of an edge and the number of cycles it occurs in.

In Section 5 we consider the problem of computing the exact value of an MST
under uncertain edge weights. While previous algorithms (U-RED [7], our algo-
rithms) aim for removing the largest-weight edge from a cycle, we now attempt
to detect minimum-weight edges separating the graph into two components. In-
terestingly, the latter cut-based algorithm can be shown to solve the original
problem (not computing the exact MST value) achieving the same best possible
competitive ratio of 2 as the cycle-based algorithm presented in [7].

Finally, in Section 6 we observe in a broader context that these two algorithms
can be interpreted as the best-in and worst-out greedy algorithm on matroids.

Due to space constraints some details are omitted and will be presented in a
full version.

2 Problem Definition, Notation and Structural Insights

Problem description. Initially we are given a weighted, undirected, connected
graph G = (V,E), with |V | = n and |E| = m. Each edge e ∈ E comes with an
uncertainty interval Ae and possibly a query cost ce. The uncertainty interval Ae

3

gives the only information about e’s unknown weight we ∈ Ae. We assume that
an interval is either trivial, i.e., Ae = [we, we], or, it is open Ae = (Le, Ue) with
lower limit Le and upper limit Ue > Le. A realization of edge weights (we)e∈E
for an uncertainty graph G is feasible, if all edge weights we, e ∈ E, lie in their
corresponding uncertainty intervals, i.e., we ∈ Ae.

The task is to find a minimum spanning tree (MST) in the uncertainty
graph G for an unknown, feasible realization of edge weights. To that end, we
may query any edge e ∈ E at cost ce and obtain the exact weight we. The goal
is to design an algorithm that constructs a sequence of queries that determines
an MST at minimum total query cost. A set of queries Q ⊆ E is feasible, if an
MST can be determined given the exact edge weights for edges in Q; that is,
given we for e ∈ Q, there is a spanning tree which is minimal for any realization
of edge weights we ∈ Ae for e ∈ E \ Q. We denote this problem as MST with
edge uncertainty and say MST under uncertainty for short.

Note that this problem does not necessarily involve computing the actual
MST weight. We refer to the problem variant in which the actual MST weight
must be computed as computing the MST weight under uncertainty.

We evaluate our algorithms by standard competitive analysis. An algorithm
is α-competitive if, for any realization (we)e∈E , the solution query cost is at most
α times the optimal query cost for this realization. The optimal query cost is
the minimum query cost that an offline algorithm must pay when it is given the
realization (and thus an MST) and has to verify an MST. The competitive ratio
of an algorithm Alg is the infimum over all α such that Alg is α-competitive.
For randomized algorithms we consider the expected query cost. Competitive
analysis addresses the problem complexity evolving from the uncertainty in the
input, possibly neglecting any computational complexity. However, we note that
all our algorithms run in polynomial time unless explicitly stated otherwise.

Structural insight. We derive a structural property that allows to reduce MST
under uncertainty to a set of crucial instances. Given an uncertainty graph G =
(V,E), consider the following two MSTs for extreme realizations. Let TL ⊆ E be
an MST for the realization wL, in which all edge weights of edges with non-trivial
uncertainty interval are close to their lower limit, more precisely we = Le + ε
for infinitesimally small ε > 0. Symmetrically, let TU ⊆ E be an MST when the
same edges have weight we = Ue − ε.

Theorem 1. Given an uncertainty graph with trees TL and TU , any edge e ∈
TL \ TU with Le 6= Ue is in every feasible query set for any feasible realization.

Proof. Given an uncertainty graph, let h be an edge in TL\TU with non-trivial
uncertainty interval. Assume all edges apart from h have been queried and thus
have fixed weight we. As edge h is in TL, we can choose its edge weight such
that edge h is in any MST. We set wh = Lh + ε and choose ε so small, that
all edges with at least the same weight in wL now have a strictly larger edge
weight. Symmetrically, if we choose the edge weight wh sufficiently close to the
upper limit Uh, no MST contains edge h. Consequently we cannot decide whether
edge h is in an MST without querying it. ut

4

Any edge in the set TL\TU with non-trivial uncertainty area is in every
feasible query set and thus can be queried in a preprocessing step. Its existence
increases the size of every feasible query set and hence decreases the competitive
ratio of an instance. Thus we restrict our analysis to instances for which the
set TL\TU contains only edges with Le = Ue, to find the worst-case competitive
ratio of an algorithm.

Assumption 1. We restrict to uncertainty graphs for which e ∈ TL \ TU im-
plies Le = Ue.

We call an edge in a cycle maximal, if any realization has an MST that does not
contain this edge. Symmetrically, an edge in a cut is minimal if every realization
has an MST containing it. Whenever we sort by increasing lower (decreasing
upper) limit, we break ties by preferring the smaller upper (greater lower) limit.

3 A Randomized Algorithm for MST under Uncertainty

We give an algorithm that solves MST under uncertainty with competitive ra-
tio 1 + 1/

√
2 ≈ 1.707 in expectation. As U-RED in [7], our algorithm is based

on Kruskal’s algorithm [14], that iteratively deletes maximal edges from cycles.
We decide how to resolve cycles, by maintaining an edge potential for each
edge e ∈ TL describing the probability to query it. The edge potentials are in-
creased in every cycle we consider throughout the algorithm. To determine the
increase, we carefully adapt a water-filling scheme presented in [17] for online
bipartite vertex cover. In this section we assume uniform query cost ce = 1,
e ∈ E, and explain the generalization to non-uniform query costs in Section 4.

Our algorithm Random is structured as follows: We maintain a tree Γ which
initially is set to TL and sort all remaining edges in R = E \ TL by increasing
lower limit. We choose a query bound b ∈ [0, 1] uniformly at random. Then we
iteratively add edges fi ∈ R to Γ , closing a unique cycle Ci in each iteration i.
Edges in Ci∩TL with uncertainty interval overlapping that of edge fi compose the
neighbor set X(fi). In each cycle we query edges until we identify a maximal edge.

To decide which edge to query in cycle Ci, we consider the potentials ye
of edges e ∈ Ci ∩ TL. In each iteration we evenly increase the potential of all
neighbors X(fi) of edge fi. We choose a threshold t(fi) as large as possible, such
that when we increase ye to max{t(fi), ye} for all neighbors e ∈ X(fi), the total
increase in the potential sums up to no more than a fixed parameter α whose
optimal value is determined later in the analysis.

Now we compare the edge potentials to the query bound b and decide if we
query the edges in X(fi) or edge fi. If these queries do not suffice to identify a
maximal edge, we repeatedly query the edge with the largest upper limit in the
cycle. A formal description of our algorithm is given in Algorithm 1.

Random computes a feasible query set, since it deletes in each cycle a maxi-
mal edge. It terminates, as in each iteration of the while loop one edge is queried.
When all edges in a cycle have been queried, we always find a maximal edge.

For the analysis of Random we combine the Kruskal-MST structure of our
algorithm with Assumption 1. Similar to the analysis in [7] we derive two lemmas.

5

Algorithm 1 Random
Input: An uncertainty graph G = (V,E) and a parameter α ∈ [0, 1].
Output: A feasible query set Q.
1: Determine tree TL, set the temporary graph Γ to TL, and initialize Q = ∅.
2: Index the edges in R = E\TL by increasing lower limit f1, . . . , fm−n+1.
3: For all edges e ∈ TL set the potential ye to 0.
4: Choose the query bound b ∈ [0, 1] uniformly at random.
5: for i = 1 to m− n+ 1 do
6: Add edge fi to the temporary graph Γ and let Ci be the unique cycle closed.
7: Let X(fi) be the set of edges g ∈ TL ∩ Ci with Ug > Lfi .
8: if no edge in the cycle Ci is maximal then
9: Maximize the threshold t(fi) ≤ 1 s.t.

∑
e∈X(fi)

max {0, t(fi)− ye} ≤ α.
10: Increase the edge potential ye = max {t(fi), ye} for all edges e ∈ X(fi).
11: if t(fi) ≤ b then
12: Add edge fi to the query set Q and query it.
13: else
14: Add all edges in X(fi) to query set Q and query them.
15: while no edge in the cycle Ci is maximal do
16: Query the edge e ∈ Ci with maximum Ue and add it to the query set Q.
17: Delete a maximal edge from Γ .
18: return The query set Q.

Lemma 1. Any feasible query set contains for every cycle-closing edge fi either
edge fi or its neighborhood X(fi).

Lemma 2. Any edge queried in Line 16 of Random is contained in any feasible
query set.

This concludes the preliminaries to prove the algorithm’s competitive ratio.

Theorem 2. For α = 1√
2
, Random has competitive ratio 1 + 1√

2
(≈ 1.707).

Proof. Consider a fixed realization and an optimal query set Q∗. We denote the
potential of an edge e ∈ TL at the start of iteration i by yie and use ye to de-
note the edge potential after the last iteration of the algorithm. The increase of
potentials in the algorithm depends on the cycles that are closed and thus on
the realization, but not the queried edges. This means the edge potentials are
chosen independently of the query bound b in the algorithm. Edges queried in
Line 16 are in Q∗ by Lemma 2, therefore an edge e ∈ TL\Q∗ is queried with
probability P (ye > b) = ye and an edge fi ∈ R\Q∗ is queried with probabil-
ity P (t(fi) ≤ b) = 1− t(fi). Hence, we can bound the total expected query cost
by

E [|Q|] ≤ |Q∗|+
∑

e∈TL\Q∗
ye +

∑
i:fi∈R\Q∗

(1− t(fi)) . (1)

For any edge e ∈ TL\Q∗, Lemma 1 states that all edges f ∈ R with e ∈ X(f)
must be in the optimal query set Q∗. The potential ye is the sum of the potential

6

increases caused by edges f ∈ R with e ∈ X(f). As in each iteration of the
algorithm the total increase of potential is bounded by α, we have∑
e∈TL\Q∗

ye =
∑

e∈TL\Q∗

∑
i:fi∈R∩Q∗,
e∈X(fi)

max
{
t(fi)− yie, 0

}
≤

∑
i:fi∈R∩Q∗

∑
e∈X(fi)

max
{
t(fi)− yie, 0

}
≤

∑
i:fi∈R∩Q∗

α = α · |R ∩Q∗|. (2)

For an edge fi ∈ R\Q∗ with t(fi) < 1 we distribute exactly potential α among its
neighbors X(fi) in Lines 9 and 10 of the algorithm. By Lemma 1, the neighbor
set X(fi) is part of the optimal query set Q∗. We consider the share of the
total potential increase each neighbor receives and distribute the term 1− t(fi)
(see (1)) according to these shares. Hence,∑

i:fi∈R\Q∗
(1− t(fi)) =

∑
i:fi∈R\Q∗

1− t(fi)
α

∑
e∈X(fi)

max{t(fi)− yie, 0}

=
∑

e∈TL∩Q∗

∑
i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)
α

(yi+1
e − yie) . (3)

In the last equation we have used yi+1
e = max{t(fi), yie}. We consider the inner

sum in (3) and bound the summation term from above by an integral from yie
to yi+1

e of the function 1−z
α . This yields a valid upper bound as the function is

decreasing in z and t(fi) = yi+1
e , unless yi+1

e − yie = 0. This yields

∑
i:fi∈R\Q∗,
e∈X(fi)

1− t(fi)
α

(yi+1
e − yie) ≤

∑
i:fi∈R\Q∗,
e∈X(fi)

∫ yi+1
e

yie

1− z
α

dz ≤
∫ 1

0

1− z
α

dz =
1

2α
.

Now we use this bound in Equation (3) and conclude∑
i:fi∈R\Q∗

(1− t(fi)) ≤
1

2α
· |TL ∩Q∗|.

Plugging this bound and (2) into (1) yields total query cost

E [|Q|] ≤ |Q∗|+ α · |R ∩Q∗|+ 1

2α
· |TL ∩Q∗| .

Choosing α = 1/
√
2 gives the desired competitive ratio 1 + 1/

√
2 for Random.

A simple example shows that this analysis is tight. Consider two parallel
edges f and g with overlapping uncertainty intervals. Let f be the edge with
larger upper limit. In Random we distribute potential α to g and potential 1−α
to edge f . However, the realization with Lf < wg < Ug < wf has optimal query
set {f}, while {g} is not a feasible query set. The algorithm queries edge g first
with probability α and has query cost 2 in this case. Thus the algorithm has
expected competitive ratio 1 + α for this instance. ut

7

4 Non-uniform Query Cost

Consider the problem MST under uncertainty in which each edge e ∈ E has
associated an individual query cost ce. W.l.o.g. we assume ce > 0, for all e ∈ E,
since querying all other edges only decreases the total query cost. We give a
new polynomial-time 2-competitive algorithm, which is deterministically best
possible. Furthermore, we adapt our algorithm Random (Sec. 3) to handle non-
uniform query costs achieving the same competitive ratio 1 + 1/

√
2.

Before showing the main results, we remark that the problem can be trans-
formed into the OP-OP model [11]. This model allows multiple queries per edge
and each query returns an open or trivial subinterval. Given an uncertainty
graph, we model the query cost ce, e ∈ E, in the OP-OP model as follows:
querying an edge e returns the same interval for ce − 1 queries and then the
exact edge weight. The 2-competitive algorithm for the OP-OP model [11] has
a running time depending on the query cost of our original problem.

Theorem 3. There is a pseudo-polynomial 2-competitive algorithm for MST
under uncertainty and non-uniform query cost.

4.1 Balancing Algorithm

Our polynomial-time algorithm Balance relies on the property that an MST
is cycle-free, similar to previous algorithms for uniform query cost. The key idea
is as follows: To decide which edge to query in a cycle, we use a value function
v : E → R≥0 that represents for an edge e ∈ E the cost difference between a
local solution containing e and one that does not. Initially we are locally only
aware of each edge individually and thus initialize its value at ce. We design a
balancing scheme that queries among two well-chosen edges the one with smaller
value and charges the value of the queried edge to the non-queried alternative.

More formally, in Balance (cf. Algorithm 2) we choose a tree TL and it-
eratively add the other edges in increasing order of lower limit to TL. In an
occurring cycle, we consider an edge f with maximal upper limit and an edge g
with overlapping uncertainty interval. We query the edge e ∈ {f, g} with the
smaller value v(e) and decrease the value of the non-queried edge by v(e). We
repeat this until we identify a maximal edge in the cycle.

Balance computes a feasible query set, since it deletes in each cycle a maxi-
mal edge. It terminates, as in each iteration of the while loop one edge is deleted
or queried. When all edges in a cycle are queried, we always find a maximal edge.

Now we consider a query set computed by Balance. For each edge e ∈ E, let
the set of its children C(e) ⊆ E be the set of edges that decreased v(e) in the al-
gorithm (cf. Line 14 and 16). Furthermore we define recursively the set of related
edges Se ⊆ E to be the union of edge e and the sets Sh of all children h ∈ C(e).

Every edge is the child of at most one edge, because when it contributes to
some value in Line 14 or 16, it is queried. Thus we can interpret a set of related
edges Se and its children-relation as a tree. Slightly abusing notation we speak of
a vertex cover VC (Se) of the set of related edges Se and mean a minimum weight

8

Algorithm 2 Balance
Input: An uncertainty Graph U = (V,E) and a query cost function c : E → R≥0.
Output: A feasible query set Q.
1: Choose a tree TL and let the temporary graph Γ = TL.
2: Index the edges in E\TL by increasing lower limit e1, e2, . . . , em−n+1.
3: Set a value function v : E → R≥0 to ce for all edges.
4: for i = 1 to m− n+ 1 do
5: Add ei to Γ .
6: while Γ has a cycle C do
7: if C contains a maximal edge e then
8: Delete e from Γ .
9: else
10: Choose f ∈ C such that Uf = max{Ue|e ∈ C} and g ∈ C\f with Ug > Lf .
11: if Ag is trivial then
12: Query edge f and add f to Q.
13: else if v(f) ≥ v(g) then
14: Query edge g, add g to Q, and subtract v(g) from v(f).
15: else
16: Query edge f , add f to Q, and subtract v(f) from v(g).
17: return The query set Q.

vertex cover in the corresponding tree. We use VC e for a vertex cover containing
edge e and VC \e for one not containing e. Similar to Lemmas 1 and 2 we have:

Lemma 3. For every feasible query set Q and every set of related edges Se in
Balance, the set Q contains a vertex cover of Se.

Lemma 4. Every edge queried in Line 12 is in every feasible query set.

The following two lemmas establish a relation between the value v(e) of an
edge e ∈ E and the cost of its related edges Se. The proof is by induction.

Lemma 5. The value function after an execution of Balance fulfills for every
edge e ∈ E and its set of related edges Se:∑

f∈VCe(Se)

cf = v(e) +
∑

f∈VC\e(Se)

cf .

Lemma 6. The value function after an execution of Balance fulfills for every
edge e ∈ E and its set of related edges Se:

2 ·
∑

f∈VC\e(Se)

cf = −v(e) +
∑
f∈Se

cf .

This concludes all preliminaries we need to prove the main theorem.

Theorem 4. Balance has a competitive ratio of 2 and this is best possible.

9

Proof. For some realization, let Q∗ denote an optimal query set and Q a query
set computed by Balance. Let A be the set of all edges not in Q and let B be
the set of all edges queried in Line 12 of Balance. As any edge in Q is either
queried in Line 12, or the child of some other edge, Q is the disjoint union of
the sets Sa\{a}, a ∈ A, and the sets Sb, b ∈ B.

We bound the cost of a set Sa\{a}, a ∈ A, by applying Lemmas 6 and then 5
and concluding from Lemma 3 that Q∗ contains a vertex cover of Sa. Hence,∑

e∈Sa\{a}

ce ≤ 2 ·
∑

e∈VC\a(Sa)

ce = 2 ·
∑

e∈VC (Sa)

ce ≤ 2 ·
∑

e∈Q∗∩Sa

ce.

By definition, every edge b ∈ B is queried in Line 12 and is thus by Lemma 4 an
element of Q∗. Applying Lemma 3 this means the cost of Q∗ ∩ Sb is at least the
of cost VC b(Sb). We use this fact after applying Lemmas 5 and 6 and deduce∑

e∈Sb

ce = v(b) + 2 ·
∑

e∈VC\b(Sb)

ce ≤ 2 ·
∑

e∈VC b(Sb)

ce ≤ 2 ·
∑

e∈Q∗∩Sb

ce.

As the set Q is a disjoint union of all sets Sa\{a}, a ∈ A, and Sb, b ∈ B, this yields
the desired competitive ratio of 2. This factor is best possible for deterministic
algorithms, even in the special case of uniform query costs [7]. ut

4.2 Randomization for Non-uniform Query Cost

We generalize the algorithm Random (Sec. 3) to the non-uniform query cost
model. The adaptation is similar to one for the weighted online bipartite vertex
cover problem in [17]. For each edge fi ∈ R we distribute at most 1/α · cfi new
potential to its neighborhood X(fi). We replace Line 9 of Random by:

Maximize t(fi) ≤ 1 s.t.
∑

e∈X(fi)

cemax{t(fi)− ye), 0} ≤
cfi
α

holds. (4)

Using exactly the same analysis as presented in Section 3 this yields:

Theorem 5. For the non-uniform query cost setting Random adapted by (4)
achieves expected competitive ratio 1 + 1√

2
.

5 Computing the MST Weight under Uncertainty

In this section we give an optimal polynomial-time algorithm for computing the
exact MST weight in an uncertainty graph. As a key to our result, we algorithmi-
cally utilize the well-known characterization of MSTs through the cut property -
in contrast to previous algorithms for the MST under uncertainty problem which
relied on the cycle property (cf. Random, Balance, and U-RED [7]).

In Cut-Weight, we consider a tree TU and iteratively delete its edges in
decreasing order of upper limits. In each iteration, we consider the cut which

10

Algorithm 3 Cut-Weight
Input: An uncertainty graph G = (V,E).
Output: A feasible query set Q.
1: Choose a tree TU and let the temporary graph Γ = TU . Initialize Q = ∅.
2: Index all edges of TU by decreasing upper limit e1, e2, ..., en−1.
3: for i = 1 to n− 1 do
4: Delete ei from Γ .
5: while Γ has two components do
6: Let S be the cut containing all edges in G between the two components of Γ .
7: if S contains a minimal edge e then
8: Query edge e and add it to Q.
9: Replace edge ei in Γ with e and contract edge e.
10: else
11: Choose g ∈ S such that Lg = min{Le|e ∈ S}, query it and add it to Q.
12: return The query set Q.

is defined in the original graph and query edges in increasing order of lower
limits until we identify a minimal edge. Then we exchange the tree edge with
the minimal edge and contract it. Applying this procedure, we only query edges
that are in any feasible query set.

Theorem 6. Cut-Weight determines the optimal query set and the exact
MST weight in polynomial time.

It may seem surprising that Cut-Weight solves the problem optimally whereas
cycle-based algorithms do not. However, there is an intuition. Cut-Weight
identifies a minimum weight edge in each cut which characterizes an MST. Infor-
mally speaking, it has a bias to query edges of the MST. In contrast, cycle-based
algorithms identify maximum weight edges in cycles, which are not in the tree.

6 Matroids under Uncertainty

We briefly consider a natural generalization of MST under uncertainty: given an
uncertainty matroid, i.e., a matroid with a ground set of elements with unknown
weights, find a minimum weight matroid base. Erlebach et al. [6] show that the
algorithm U-RED [7] can be applied to uncertainty matroids with uniform query
cost and yields again a competitive ratio of 2. Similarly, our algorithms Random
and Balance can be generalized to matroids with non-uniform cost, and Cut-
Weight can determine the total weight of a minimum weight matroid base.

Theorem 7. There are deterministic resp. randomized online algorithms with
competitive ratio 2 resp. 1.707 for finding a minimum weight matroid base in an
uncertainty matroid with non-uniform query cost.

Theorem 8. There is an algorithm that determines an optimal query set and
the exact weight of a min-weight matroid base in an uncertainty matroid.

11

In a matroid with known weights we can find a minimum weight base greedily;
we distinguish between best-in greedy and worst-out greedy algorithms (cf. [14]).
They are dual in the sense that both solve the problem on a matroid and take
the role of the other on the corresponding dual matroid. The best-in greedy
algorithm adds elements in increasing order of weights as long as the system
stays independent. Merging ideas from our algorithm Random and U-RED2
in [6] yields a best-in greedy algorithm, Cycle-Alg, for uncertainty matroids.
A worst-out greedy algorithm deletes elements in decreasing order of weights
as long as a basis is contained. We can adapt our algorithm Cut-Weight in
Section 5 to a worst-out greedy algorithm, Cut-Alg, for uncertainty matroids.
Proposition 1. The algorithms Cycle-Alg and Cut-Alg are dual to each
other in the sense that they solve the same problem on a matroid and its dual.

Acknowledgments. We thank the anonymous referees for numerous helpful
comments that improved the presentation of the paper.

References

1. A. Ben-Tal, L. El Ghaoui, and A. S. Nemirovski. Robust Optimization. Princeton
Series in Applied Mathematics. Princeton University Press, 2009.

2. J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer
Series in Operations Research. Springer, 1997.

3. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cam-
bridge University Press, 1998.

4. T. Erlebach. Computing with uncertainty. Invited lecture, Graduate Program
MDS, Berlin, 2013.

5. T. Erlebach and M. Hoffmann. Minimum spanning tree verification under uncer-
tainty. In Proceedings of WG, pages 164–175, 2014.

6. T. Erlebach, M. Hoffmann, and F. Kammer. Query-competitive algorithms for
cheapest set problems under uncertainty. In Proc. of MFCS, pages 263–274, 2014.

7. T. Erlebach, M. Hoffmann, D. Krizanc, M. Mihalák, and R. Raman. Computing
minimum spanning trees with uncertainty. In Proc. STACS, pages 277–288, 2008.

8. T. Feder, R. Motwani, L. O’Callaghan, C. Olston, and R. Panigrahy. Computing
shortest paths with uncertainty. Journal of Algorithms, 62:1–18, 2007.

9. T. Feder, R. Motwani, R. Panigrahy, C. Olston, and J. Widom. Computing the
median with uncertainty. SIAM Journal on Computing, 32:538–547, 2003.

10. M. Goerigk, M. Gupta, J. Ide, A. Schöbel, and S. Sen. The robust knapsack
problem with queries. Computers & OR, 55:12–22, 2015.

11. M. Gupta, Y. Sabharwal, and S. Sen. The update complexity of selection and
related problems. In Proc. of FSTTCS, volume 13 of LIPIcs, pages 325–338, 2011.

12. S. Kahan. A model for data in motion. In Proc. of STOC, pages 267–277, 1991.
13. S. Khanna and W. C. Tan. On computing functions with uncertainty. In Proceed-

ings of PODS, pages 171–182, 2001.
14. B. Korte and J. Vygen. Combinatorial optimization, volume 21. Springer, 2012.
15. C. Olston and J. Widom. Offering a precision-performance tradeoff for aggregation

queries over replicated data. In Proceedings of VLDB, pages 144–155, 2000.
16. P. Patil, A. P. Shrotri, and A. R. Dandekar. Management of uncertainty in supply

chain. Int. J. of Emerging Technology and Advanced Engineering, 2:303–308, 2012.
17. Y. Wang and S. C.-W. Wong. Two-sided online bipartite matching and vertex

cover: Beating the greedy algorithm. In Proc. of ICALP, pages 1070–1081, 2015.

12

