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DUAL TECHNIQUES FOR SCHEDULING ON A MACHINE WITH
VARYING SPEED∗

NICOLE MEGOW† AND JOSÉ VERSCHAE‡

Abstract. We study scheduling problems on a machine with varying speed. Assuming a known
speed function we ask for a cost-efficient scheduling solution. Our main result is a polynomial-time
approximation scheme (PTAS) for minimizing the total weighted completion time in this setting.
This also implies a PTAS for the closely related problem of scheduling to minimize generalized global
cost functions, that is, the problem 1||∑wjf(Cj ). The key to our results is a reinterpretation of
the problem within the well-known two-dimensional Gantt chart: instead of the standard approach
of scheduling in the time dimension, we construct scheduling solutions in the weight dimension.
This allows structural simplifications of the instance and optimal solutions, based on which we can
defer the concern of speed to the evaluation of cost in a dynamic programming framework. We also
consider a dynamic problem variant, where the decision upon the speed is part of the problem and we
are interested in the trade-off between scheduling cost and speed-scaling cost, which is typically the
energy consumption. We observe that the optimal order is independent of the energy consumption
and that the problem can be reduced to the setting where the speed of the machine is fixed, and thus
admits a PTAS. Furthermore, we provide a fully polynomial-time approximation scheme for the NP-
hard problem variant in which the machine can run only at a fixed number of discrete speeds. Finally,
we show how our results can be used to obtain a (2 + ε)-approximation for scheduling preemptive
jobs with release dates on multiple identical parallel machines.

Key words. scheduling, approximation algorithms, speed scaling, power management, general-
ized min-sum cost functions, nonavailability periods
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1. Introduction. In several computation and production environments we face
scheduling problems in which the speed of resources may vary. We distinguish mainly
two types of varying-speed scenarios: one in which the speed is a given function of time
and another dynamic setting in which deciding upon the processor speed is part of the
scheduling problem. The first setting occurs, e.g., in production environments where
the speed of a resource may change due to overloading, aging, or in an extreme case
it may be completely unavailable due to maintenance or failure. The dynamic setting
finds application particularly in modern computer architectures, where speed-scaling
is an important tool for power management. Here we are interested in the trade-off
between the power consumption and the quality-of-service. Both research directions—
scheduling on a machine with given speed fluctuation as well as scheduling including
speed-scaling—have been pursued quite extensively, but seemingly separately from
each other.
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Ingenieŕıa, Pontificia Universidad Católica de Chile, Santiago, Chile (jverscha@uc.cl).

1541

D
ow

nl
oa

de
d 

07
/0

5/
18

 to
 1

34
.1

02
.1

07
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://www.siam.org/journals/sidma/32-3/M105589.html
mailto:nicole.megow@uni-bremen.de
mailto:jverscha@uc.cl


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1542 NICOLE MEGOW AND JOSÉ VERSCHAE

The main focus of our work and the main technical contribution lie in the setting
with a given speed function. We consider the problem of scheduling to minimize the
sum of weighted completion times

∑
j wjCj , a standard measure for quality-of-service.

We present a polynomial-time approximation scheme (PTAS) for this problem which
is best possible unless P=NP. This result translates directly to the equivalent prob-
lem 1| |∑j wjf(Cj) (with f nondecreasing), that is, the problem of scheduling on
a machine with unit speed but with a nonlinear objective function

∑
j wjf(Cj). In

addition, we draw an interesting connection to the dynamic model which allows us to
transfer some of our techniques to this setting.

Standard scheduling techniques rely on delaying jobs or rounding and approx-
imating processing requirements. Such approaches generally fail on varying-speed
machines. The reason is that the slightest error introduced by rounding might pro-
voke an unbounded increase in the solution cost. Similarly, adding any amount of
idle time to the machine might be fatal. To illustrate this, consider a machine with
unit processing speed which reduces its speed to zero during the interval [d,D], with
D � d. Now, a single job j with processing time d can obviously complete by time d.
However, any rounding up or delay will cause a dramatic change in the completion
time of j and, thus, may provoke a large change in the overall cost. This would be
the case if the job has a relatively large weight, but it will not happen if the weight
of this job is small relative to the total weight of the instance.

At a high level, we determine the flexibility for modifying our solution depending
on the weight of unfinished jobs at a given point in time. Following our example,
assume that the job j with processing time d has a weight w ≤ εW , where W is the
total weight of the instance. Assume further that after j, our solution processes a
second job, j′, of processing time p and weight, say, W/2 or less. Then we observe
that the remaining weight after j and j′ are completed is still Ω(W ). Thus, swapping
the two mentioned jobs cannot increase the cost of the total solution dramatically.
The reason is that the total cost of the solution is at least Ω(W · (D + p)), and thus,
even if the cost increases by w(D+ p) = εW (D+ p), this error is small relative to the
total cost of the solution.

The previous example suggests that the remaining weight may give valuable in-
formation about when jobs are interchangeable without increasing the cost too much
and, thus, how much flexibility we have in a solution independently of the speed func-
tion. In order to exploit this in a PTAS we need a very precise and flexible approach
to handle such information. We use the well-known geometric view of the min-sum
scheduling problem in a two-dimensional Gantt chart, an interpretation originally in-
troduced by Eastman, Even, and Isaacs [13]. We deviate from the standard view
of scheduling in the time dimension and switch to scheduling in the weight dimen-
sion. The high-level approach is simple: we design a dynamic program (DP) that
computes an optimal schedule in the weight dimension which then can be directly
translated into a true schedule (in time). The key contribution is that our DP needs
to take the speed into account only when computing the value of a DP state whereas
any partitioning and rounding can be done only in the weight dimension and, most
importantly, independently of the speed.

1.1. Previous work. Research on scheduling on a machine of given varying
speed has mainly focused on the special case of scheduling with nonavailability periods;
see, e.g., [12, 20, 21, 25]. Despite a history of more than 30 years, only recently was
the first constant approximation for min

∑
wjCj derived by Epstein et al. [14]. In

fact, their (4 + ε)-approximation computes a universal sequence which has the same
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SCHEDULING ON A MACHINE WITH VARYING SPEED 1543

guarantee for any (unknown) speed function. For the setting with release dates,
they give an approximation algorithm with the same guarantee for any given speed
function. If the speed is assumed to be nondecreasing (and the release dates are
trivial), there is an efficient PTAS [27]. In this case the complexity status remains
open, whereas for general speed functions the problem is strongly NP-hard, even when
for each job the weight and processing time are equal [30].

The problem of scheduling on a machine of varying speed is equivalent to schedul-
ing on an ideal machine (of constant speed) but minimizing a more general global cost
function

∑
wjf(Cj), where f is a nondecreasing function. In this identification, f(C)

denotes the time that the varying-speed machine needs to process a work volume
of C [16]. The special case of only nondecreasing (nonincreasing) speed functions
corresponds to concave (convex) global cost functions. In a recent work, Höhn and
Jacobs [16] give a formula for computing tight guarantees for Smith’s rule for any
convex or concave function f . They also show that the problem for an increasing
piecewise linear cost function is strongly NP-hard even with only two different slopes,
and so is our problem when the speed function takes only two distinct values.

Even more general min-sum cost functions have been studied, where each job
may have its individual nondecreasing cost function. For this setting, Cheung et
al. [11] give the currently best known approximation algorithm with a worst-case
factor of 4+ ε. For the more complex setting with release dates, Bansal and Pruhs [5]
present a randomized O(log logP )-approximation, where P is the ratio between the
largest to smallest processing time. Clearly, these results translate also to the setting
with varying machine speed.

Scheduling with dynamic speed-scaling was initiated in the work by Yao, De-
mers, and Shenker [31] and became a very active research field in the past fifteen
years. Most work focuses on scheduling problems where jobs have release dates and
deadlines and the objective is to minimize energy consumption. We refer to [2, 17]
for an overview. Closer to our setting is the work initiated by Pruhs, Uthaisombut,
and Woeginger [24] who present a polynomial algorithm for minimizing the total flow
time given an energy budget if all jobs have the same work volume. This work is
later continued by many others; see, e.g., [3, 6, 9] and the references therein. Most
of this literature is concerned with online algorithms to minimize total (or weighted)
flow time plus energy. The minimization of the weighted sum of completion times
plus energy has been considered recently. Angel, Bampis, and Kacem [4] derive con-
stant approximations for nonpreemptive models with unrelated machines and release
dates. Carrasco, Iyengar, and Stein [8] obtain similar results even under precedence
constraints.

For the general objective of speed-scaling with an energy budget as considered in
this paper, Angel, Bampis, and Kacem [4] show a randomized (2 + ε)-approximation
slightly exceeding the energy budget for nonpreemptive scheduling on unrelated ma-
chines with release dates. The bounds given for scheduling cost and the budget excess
are satisfied only in expectation.

1.2. Our results. We give several best possible algorithms for problem variants
that involve scheduling to minimize the total weighted completion time on a single
machine that may vary its speed.

Our main result is an efficient PTAS (section 3) for scheduling to minimize∑
wjCj on a machine of varying speed (given by an oracle). This is best possi-

ble since the problem is strongly NP-hard, even when the machine speed takes only
two distinct values [16]. Our results generalize previous results such as a PTAS on a

D
ow

nl
oa

de
d 

07
/0

5/
18

 to
 1

34
.1

02
.1

07
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1544 NICOLE MEGOW AND JOSÉ VERSCHAE

machine with only nondecreasing speeds [27] and fully polynomial-time approximation
schemes (FPTASs) for only one nonavailability period [18, 19].

As mentioned before, standard scheduling techniques rely on delaying jobs or
rounding processing requirements, which, in general, must fail on varying-speed ma-
chines. Our techniques completely avoid this difficulty by a change of paradigm. To
explain our ideas it is helpful to use a two-dimensional (2D) Gantt chart interpreta-
tion [13]; see section 2. As observed before, e.g., in [15], we obtain a dual scheduling
problem by looking at the y-axis in a 2D-Gantt chart and switching the roles of the
processing times and weights. In other words, a dual solution describes a schedule by
specifying the remaining weight of the system at the moment a job completes. This
simple idea avoids the difficulties on the time axis and allows one to combine old with
new techniques for scheduling on the weight axis.

In the case that an algorithm can set the machine at arbitrary speeds, we show in
section 4 that the optimal scheduling sequence is independent of the available energy.
This follows by analyzing a convex program that models the optimal energy assign-
ment for a given job permutation. A similar observation was made independently
by Vásquez [29] in a game-theoretic setting. We show that computing this universal
optimal sequence corresponds to the problem of scheduling with a particular concave
global cost function, which can be solved with our PTAS mentioned above, or with
a PTAS for nondecreasing speed [27]. Interestingly, this reduction relies again on a
problem transformation from time space to weight space in the 2D Gantt chart. For
a given scheduling sequence, we give an explicit formula for computing the optimal
energy (speed) assignment. Thus, we have a PTAS for speed-scaling and schedul-
ing for a given energy budget. We remark that the complexity of this problem is
open.

In many applications, including most modern computer architectures, machines
are only capable of using a given number of discrete power (speed) states. We provide
in section 5 an efficient PTAS for this complex scenario. This algorithm is again
based on our techniques relying on dual schedules. Furthermore, we obtain a (1+ ε)-
approximation of the Pareto frontier for the energy-cost bicriteria problem. On the
other hand, we show that this problem is NP-hard even when there are only two
speed states. We complement this result by giving an FPTAS for a constant number
of available speeds.

In section 6 we consider a more complex scheduling problem in the speed-scaling
setting: jobs have individual release dates and must be scheduled preemptively on m
identical parallel machines. We notice that our PTAS results can be utilized to obtain
a (2+ε)-approximation for scheduling preemptive jobs with nontrivial release dates on
identical parallel machines. Here, we apply our previous results to solve a fast single
machine relaxation [10] combined with a trick to control the actual job execution
times. Then, we keep the energy assignments computed in the relaxation and apply
preemptive list scheduling on parallel machines respecting release dates. We note that
our deterministic algorithm guarantees that any solution it obtains has cost within
a factor of 2 + ε and it meets the energy budget. This cannot be guaranteed in the
previous nonpreemptive result for our objective function with energy budget in [4].

This paper expands considerably the extended abstract that appeared in the
proceedings of ICALP 2013 [22]. Among others, this new version contains com-
plete proofs, full presentation of our techniques, and new approximation results for
more general scheduling problems with release dates and identical parallel machines
(section 6).
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2. Model, definitions, and preliminaries.

2.1. Problem definition. We consider two types of scheduling problems. In
both cases we are given a set of jobs J = {1, . . . , n} with work volumes (i.e., pro-
cessing time at speed 1) vj ≥ 0 and weights wj ≥ 0. We seek a schedule on a single
machine, described by a permutation of jobs, that minimizes the sum of weighted
completion times. The speed of the machine may vary—this is where the problems
are distinguished.

In the problem scheduling on a machine of given varying speed we assume that
the speed function s : R+→ R+ is given implicitly by an oracle. Given a value v,
the oracle returns the first point in time when the machine can finish v units of work.
That is, for a speed function s the oracle returns the value

(2.1) f(v) := inf

{
b > 0 :

∫ b

0

s(t)dt ≥ v

}
.

Here we are implicitly assuming that s is integrable. Using the oracle, we can
compute for a given order of jobs the execution and completion times and thus the
total cost of the solution. We additionally must ensure that the numbers returned
by the oracle can be handled efficiently. To avoid extra technical difficulties, we call
an algorithm efficient if it runs in time polynomial in the input size and the largest
encoding size of a number returned by the oracle.

In the problem scheduling with speed-scaling an algorithm determines not only a
schedule for the jobs but will also decide at which speed s ≥ 0 the machine will run at
any time. Running a machine at a certain speed requires a certain amount of power.
Power is typically modeled as a monomial (convex) function of speed, P (s) = sα with
a small constant α > 1. Given an energy budget E, we ask for the optimal power
(and thus speed) distribution and corresponding schedule that minimizes

∑
j wjCj .

More generally, we are interested in quantifying the trade-off between the scheduling
objective

∑
j wjCj and the total energy consumption, that is, we aim for computing

the Pareto curve for the bicriteria minimization problem. We consider two variants
of speed-scaling: if the machine can run at an arbitrary speed level s ∈ R+, we say
that we are in the continuous-speed setting. On the other hand, if that machine
can only choose among a finite set of speeds {s1, . . . , sκ} we are in the discrete-speed
environment.

In both of our settings our solution concept is a permutation of jobs. Notice that
this is no restriction since preemption or idle times cannot reduce the cost of the
solution.

2.2. From time space to weight space. For a schedule S, we let Sj(S) and
Cj(S) denote the starting time and completion time, respectively, of job j. Further-
more, we let WS(t) =

∑
j:Cj>t wj denote the total weight of all jobs that complete in

S strictly after t. Note that by definition WS(t) is right-continuous, i.e., if Cj(S) = t,
the weight of j does not count towards the remaining weight WS(t). To simplify
notation, whenever S is clear from the context we will omit it and write Cj and W (t)
instead.

In Figure 1(a), we show a typical schedule with five jobs in the well-known 2D
Gantt chart representation. Given some speed function and a schedule as depicted
on the x-axis, each job j is represented by a rectangle with a length corresponding to
the processing time xj (not to be confused with the processing volume) and a height
corresponding to the job weight. The schedule on the x-axis is described explicitly
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(a) 2D Gantt chart of schedule with 5v jobs with
the function of remaining weights (bold).
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(b) Same figure as (a) additionally depicting the
weight schedule and the used notation.

Fig. 1. 2D Gantt chart.

by giving the completion time Cj of each job j. We refer to this standard schedule
as time schedule. The function in bold is the remaining weight function W (·) of the
schedule. Notice that, in general, the cost of a schedule equals the area under the
remaining weight curve, that is,

(2.2)
∑
j∈J

wjCj =

∫ ∞

0

W (t)dt.

Weight schedule. A key idea in this paper is as follows: instead of describing a
scheduling solution by specifying completion times in a time schedule, we describe it
in terms of the remaining weight function W . Consider Figure 1(b). It depicts the
same 5-job instance with the same time schedule as Figure 1(a). On the y-axis there
is given a dual schedule which we call the weight schedule. Informally speaking, it
is obtained by projecting the 2D-Gantt chart on the y-axis. In the resulting weight
schedule each job has a length corresponding to its weight, and the scheduling order,
from bottom to top, is the reverse order of the time schedule.

In this paper we produce scheduling solutions by constructing a weight schedule
from bottom to top on the weight axis, that is, we essentially schedule along the
weight axis. We use a notation that imitates the standard notation when scheduling
on the time axis and indicate by superscript w that we refer to the weight space. We
call the point on the y-axis at which a job j starts, the starting weight and denote it
by Sw

j . Similarly, we define the completion weight of j as Cw
j := Sw

j + wj . Observe
that in Figure 1(b) we have Sw

5 = 0, Cw
5 = Sw

4 = w5, C
w
4 = Sw

3 = w5 + w4, etc.
With this notation, we formally define a weight schedule for a set of jobs with non-

negative weights as a collection of completion weights Cw
j ∈ R+ with corresponding

starting weights Sw
j = Cw

j −wj ≥ 0, where the intervals [Sw
j , C

w
j ) are pairwise disjoint.

Notice that the value Sw
j is not necessarily implied by an underlying time schedule.

The reason is that in a weight schedule, as defined above, we may keep some idleness
between jobs; see the example in Figure 2(a). We elaborate on this below.

Also notice that in nonidling schedules, the starting weight of a job j in the
weight schedule corresponds to the value of W at the time that j completes in the
time schedule. Similarly, the completion weight of j is the total remaining weight of
all jobs completing by or after Cj in the time schedule. Hence, a weight schedule
immediately defines a unique nonpreemptive time schedule without idle time: simply
order the jobs by decreasing completion weights. Similarly, each time schedule defines
a unique nonidling weight schedule by defining Sw

j as the value of the remaining weight
at the time j completes.
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idle weight

(a) Scheduling solution with artificially added
idle weight; the time schedule has no idle time.
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(b) New situation after placing job 2 in idle
weight and decreasing its completion weight.

Fig. 2. 2D Gantt charts and idle weight.

Idle weight. While we restrict ourselves to schedules without idle time, it will be
convenient to allow idleness in the corresponding weight schedules. In Figure 2(a),
there is shown a weight schedule with Sw

5 = 0, Cw
5 = w5, and Sw

4 > Cw
5 . We say that

w ∈ R+ is an idle weight if w �∈ [Sw
j , C

w
j ] for all j. In the weight schedule depicted in

Figure 2(a), each w in the hatched interval (Cw
5 , Sw

4 ) is an idle weight, as no interval
[Sw

j , C
w
j ] intersects it. Notice, that for each (nonidling) time schedule there is an

infinite number of corresponding weight schedules.
We express the cost of a weight schedule as follows. Consider a weight schedule

with completion weights Cw
1 ≥ · · · ≥ Cw

n and the corresponding (unique) time schedule
without idle times with completion times C1 ≤ · · · ≤ Cn. To simplify notation let
Cw

n+1 = 0. Then we define the cost of the weight schedule as
∑n

j=1(C
w
j −Cw

j+1)Cj . It is

easy to check, even from the 2D Gantt chart, that this value equals
∑n

j=1 x
S
j C

w
j , where

xS
j is the execution time of job j (in time space). For example, see Figure 2(a), and

notice that the cost of the weight schedule equals the integral of the bold curve, while
the cost of the corresponding time schedule, given by (2.2), equals that integral minus
the hatched area under the curve. More generally, the cost of the weight schedule
equals the cost of the time schedule, see (2.2), if and only if the weight schedule
does not have any idle weight. In general, the cost of the weight schedule can only
overestimate the cost of the corresponding schedule in time space (without idle time).

Advantages. Working with weight schedules has a number of technical advantages
when scheduling on a machine of varying speed. In particular, time schedules are
highly sensitive to machine-speed variations. The execution time of a job may change
drastically even when only slightly shifting a job. Standard scheduling techniques
such as rounding and guessing in the time axis are hard to control in how they affect
the cost of a solution. On the other hand, in a weight schedule the length of a job, that
is, its weight, is fixed and we can round it and create idle weight without provoking
an unbounded increase in the cost.

By adding idle weight, we gain flexibility which allows us, for example, to delay
one or more jobs in the time schedule without further increasing the cost. Con-
sider Figure 2(a) to exemplify this. Here, job 2 fits in the idle weight between
jobs 4 and 5 (hatched area). A new solution obtained by moving job 2 to this idle
weight, and thus, decreasing its completion weight, is shown in Figure 2(b). This
operation delays job 2 in the time schedule, while it schedules jobs 3 and 4 ear-
lier. However, the total cost of the weight schedule, i.e., the area under the curve,
decreases.
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Fig. 3. Partial weight schedule. 2D Gantt chart showing a partial weight schedule of three jobs
and its corresponding time schedule. The gray area corresponds to the cost of this partial solution.

We will make extensive usage of this property which we formalize in the following
observation and which can be derived directly from the 2D Gantt chart.

Observation 2.1. Consider a weight schedule S with enough idle weight so that de-
creasing the completion weight of some job j, while leaving the rest untouched, yields a
feasible weight schedule. This operation does not increase the cost of the weight sched-
ule S. Indeed, notice that job j is the only job for which its completion time might
increase. However, this does not increase the cost of the weight schedule since the
extra cost is dominated by the area induced by the idle weight in the original schedule.

3. A PTAS for scheduling on a machine with given speeds. In this section
we give a PTAS for minimizing

∑
j wjCj on a single machine with a given speed

function. Our algorithm is a DP that constructs a weight schedule from bottom to top
along the weight axis which can be turned into a regular time schedule by scheduling
jobs nonpreemptively in the reverse order, i.e., in decreasing order of completion
weights.

The overall idea of the DP is simple. Let w(S) :=
∑

j∈S wj denote the to-
tal weight of jobs in set S. For any u ∈ Z, we define a family of job sets Fu :=
{S ⊆ J : w(S) < (1 + ε)u}. That is, a set S belongs to Fu if and only if we can feasi-
bly schedule all jobs in S within weights 0 and (1+ε)u. Our DP computes the optimal
solution for scheduling set S ∈ Fu on the weight axis during interval [0, (1 + ε)u) by
guessing the optimal subset S′ ∈ Fu−1 with S′ ⊆ S, of jobs processed in the weight
interval [0, (1 + ε)u−1).

The total cost of a partial weight schedule S for set S is defined as
∑

j∈S xS
j C

w
j ,

where xS
j is the execution time of job j; cf. the gray area in Figure 3. Observe that we

can determine these execution times of the first jobs in a partial weight schedule (last
jobs in the corresponding time schedule) since we can compute a priori the makespan
of the final solution, that is, the completion time of the last job on the time axis.
Indeed, since there is no idle time, the makespan equals the total time it takes to
execute all jobs, i.e., f(

∑
j vj), and can be computed by calling the oracle once. It

is not hard to estimate the optimal cost for subset S given the optimal cost for S′,
which is given by the dynamic programming table. Within a (1+ε) factor, this cost is∑

j∈S′ xS
j C

w
j +(1+ ε)u

∑
j∈S\S′ xS

j , and
∑

j∈S\S′ xS
j is completely determined by the

total processing volumes of S and S′. With this, computing the value of the dynamic
programming table for set S reduces to comparing the corresponding costs over all
possible sets S′ ⊆ S for S′ ∈ Fu−1.

Implementing this approach has a crucial problem, namely, a set Fu might have
exponential size. The bulk of our technical contribution consists in decreasing the
size Fu to a constant with only a minor impact on the objective function value. This
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SCHEDULING ON A MACHINE WITH VARYING SPEED 1549

will be done using a series of rounding and simplification techniques that show the
existence of a highly structured near-optimal weight schedule. This structured weight
schedule is then used to construct the compact versions of sets Fu, which we call F̃u.
A crucial technique for doing this is the creation of idle weight via weight stretching,
which allows us to use Observation 2.1 to shift jobs without increasing further the cost.

The construction of sets F̃u has two steps. First, we classify jobs as light or heavy
depending on their weight and position in the schedule. We say that a job is light in a
given schedule with starting weight Sw

j if wj ≤ ε3(1+ε)Sw
j . Intuitively, light jobs can

be treated as infinitesimally small jobs. We show that, given any weight schedule for
heavy jobs, light jobs can be scheduled optimally if we first sort them nonincreasingly
by vj/wj , that is, the reverse order of the well-known Smith order [26], and then
assign them greedily.

Additionally, for each job j, heavy or light, we compute an interval [rwj , d
w
j ) with

two properties: (i) the interval is sufficiently small, i.e., dwj /r
w
j ∈ O(poly(1/ε)), and

(ii) there exists a near optimal weight schedule where all jobs lie within [rwj , d
w
j ). With

this in place we can compute sets F̃u. Notice that then each job with dwj < (1 + ε)u

will belong to every set in F̃u, and every job with rwj ≥ (1 + ε)u will not belong to

any set in F̃u. Hence, the enumeration of sets F̃u only needs to consider jobs j with
(1 + ε)u ∈ (rwj , d

w
j ]. To enumerate small jobs, the fact that they can be scheduled

greedily implies that we must only decide what is the smallest ratio vj/wj of a job
scheduled before (1+ε)u. Using rounding techniques, we can assume that the number
of different choices is poly(1/ε). Moreover, after rounding the weights to powers of
(1 + ε), the number of different weights of heavy jobs with (1 + ε)u ∈ (rwj , d

w
j ] can be

shown to be at most poly(1/ε), creating poly(1/ε) classes of jobs. For each of these
classes, an optimal solution will sort them by processing volume (independently of
the machine speed!). Furthermore, we will show that our construction of intervals
[rwj , d

w
j ) implies that the number of jobs within each class is poly(1/ε). Hence, for a

given class we must consider a constant number of different choices. Combining all
our choices, we obtain that the size of F̃u is at most 2poly(1/ε).

One major advantage of this approach is that the construction of compact sets
F̃u is done completely in the weight axis, and thus it is independent of the speed
function. Thus, we only need to call the oracle, and weigh in the effect of the speed
function, when constructing the dynamic programming table. Additionally, the fact
that F̃u is independent of the speed will allow us to reuse this construction in the
variable-speed setting for speed-scaling, and it might be useful for related problems.

The structure of the rest of this section is as follows:
• In subsection 3.1, we explain our DP which initially takes exponential time.
• In subsection 3.2, we apply some general rounding techniques known from
standard scheduling on the time axis and generate idle weight.
• Subsection 3.3 shows that a greedy approach suffices to schedule light jobs.
• In subsection 3.4 we compute the intervals [rwj , d

w
j ) for each j.

• Finally, in subsection 3.5 we show how to compute the compact subsets F̃u

by using the intervals [rwj , d
w
j ) together with the fact that light jobs can be

scheduled greedily.

3.1. Dynamic program. We describe our dynamic programming approach and
construct a dynamic programming table with exponentially many entries.

Consider a subset of jobs S ⊆ J and a partial schedule of S in the weight space.
In our DP, S will correspond to the set of jobs at the beginning of the weight schedule,
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1550 NICOLE MEGOW AND JOSÉ VERSCHAE

i.e., if j ∈ S and k ∈ J \ S then Cw
j < Cw

k . A partial weight schedule S of jobs in
S implies a schedule in time space with the following interpretation. Note that the
makespan of the time schedule is completely defined by the total work volume

∑
j vj .

We impose that the last job of the schedule, which corresponds to the first job in S,
finishes at the makespan. This uniquely determines a value of Cj for each j ∈ S, and
thus also its execution time xS

j . The total cost of this partial schedule is defined to

be
∑

j∈S xS
j C

w
j . See Figure 3 for a pictorial example; the gray area defines the cost

of the partial weight schedule.
Consider a discretization of the weight space defined by intervals Iu = [(1+ε)u−1,

(1 + ε)u) for u ∈ {1, . . . , ν}, where ν := 	log1+ε

∑
j∈J wj
. We denote the length of

each interval Iu as |Iu| := ε(1 + ε)u−1, and recall that for a job set S we denote
by w(S) its total weight,

∑
j∈S wj . Recall that Fu := {S ⊆ J : w(S) < (1 + ε)u},

that is, a set S ∈ Fu is a potential set of jobs to be processed in weight interval
[0, (1 + ε)u) =

⋃
u′≤u Iu′ . For a given interval Iu and set S ∈ Fu, we construct a

table entry T (u, S) with a (1 +O(ε))-approximation to the optimal cost of a weight
schedule of S subject to Cw

j < (1 + ε)u for all j ∈ S.
Consider now S ∈ Fu and S′ ∈ Fu−1 with S′ ⊆ S. Let S be a partial solution

scheduling all jobs in S. Further assume that the set of jobs with completion weight
in Iu is S \ S′. We define APXu(S

′, S) = (1 + ε)u
∑

j∈S\S′ xS
j , which is a (1 + ε)-

approximation of
∑

j∈S\S′ xS
j C

w
j , the partial cost associated with S \ S′. We remark

that the values
∑

j∈S\S′ xS
j and APXu(S

′, S) do not depend on the whole schedule

S, but only on the total work volume of jobs in S′ and S. Moreover, this value can
be computed with two calls to the oracle,

∑
j∈S\S′

xS
j = f

⎛
⎝ ∑

j∈J\S′
vj

⎞
⎠− f

⎛
⎝ ∑

j∈J\S
vj

⎞
⎠ .

We can compute T (u, S) with the following formula,

T (u, S) = min{T (u− 1, S′) + APXu(S
′, S) : S′ ∈ Fu−1, S

′ ⊆ S}.
The set Fu can be of exponential size, and thus also this dynamic programming

table. In the following we show that there is a polynomial size set F̃u that yields
(1 + ε)-approximate solutions. We remark that the set F̃u will not depend on the
speed of the machine. We only need to consider the information about the speed
function for computing APXu(S

′, S) while constructing the dynamic programming
table.

3.2. Basic rounding and idle weight generation. In order to gain struc-
ture, we start by applying several modifications to the instance and optimal solution.
Consider 0 < ε < 1/2. We will apply two important procedures to modify weight
schedules. They are used to create idle weight so as to apply Observation 2.1, and
they only increase the total cost by a factor 1 +O(ε). Similar techniques, applied in
time space, were used by Afrati et al. [1] for problems on constant-speed machines.

1. Weight stretch: We multiply by 1+ε the completion weight of each job. This
creates an idle weight interval of length εwj before the starting weight of job
j. This operation increases the cost by a 1 + ε factor.

2. Stretch intervals: We delay the completion weight of each job j with Cw
j ∈ Iu

by |Iu|, so that Cw
j belongs to Iu+1. Then |Iu+1| − |Iu| = ε2(1 + ε)u−1 =

ε|Iu+1|/(1 + ε) units of weight are left idle in Iu+1 after the transformation,
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unless there was only one job completely covering Iu. By moving jobs within
Iu+1, we can assume that this idle weight is consecutive. This transformation
increases the cost by at most a factor (1 + ε)2 = 1+O(ε).

3.3. Light jobs. We structure an instance by classifying jobs by their size in
weight space. This classification allows us to determine the schedule of part of the
jobs greedily, which will help us to define compact sets F̃u properly.

Definition 3.1. Given a schedule and a job j with starting weight Sw
j ∈ Iu, we

say that j is light for Sw
j if wj ≤ ε2|Iu|. A job that is not light is heavy for Sw

j .

To simplify notation, we say that a job is light or heavy when the starting weight
Sw
j is clear from the context.

Given a weight schedule for heavy jobs, we give a greedy algorithm for scheduling
light jobs that increases the cost by a 1 +O(ε) factor. Consider any weight schedule
S. First, remove all light jobs. Then we move jobs within each interval Iu, such
that the idle weight in Iu is consecutive. Clearly, this can only increase the cost of
the solution by a factor 1 + ε. Then, we apply a preemptive greedy algorithm to
assign light jobs, namely, Smith’s rule [26]. More precisely, for each idle weight w we
process the job j that maximizes vj/wj among jobs that are not completely processed
yet and wj ≤ ε2|Iu|. (Here we give priority to jobs with smallest weight to work
volume ratio, which is the opposite of the standard Smith’s rule; intuitively, this is
because in weight space jobs are scheduled in reversed order as in time space.) To
remove preemptions, we apply the stretch interval subroutine,1 creating an idle weight
interval in Iu of length at least ε|Iu|/(1 + ε) ≥ ε|Iu|/2 ≥ ε2|Iu| (since ε ≤ 1/2). This
gives enough space in each interval Iu to completely process the (unique) preempted
light job with starting weight in Iu. The algorithm returns this last schedule, called S ′.
Summarizing, the algorithm is as follows.

Algorithm 3.1 Smith in Weight Space.

Input: A weight schedule S.
1: Remove all light jobs in S and move the remaining jobs within each interval Iu,

such that the idle weight in Iu is consecutive.
2: Reverse Smith’s rule: For u = 1, . . . , ν and each idle weight w ∈ Iu, process at w

a job j maximizing vj/wj among all available jobs with wj ≤ ε2|Iu|.
3: Apply the stretch intervals subroutine.
4: For each u move the unique preempted light job with starting weight in Iu (if

any) so that it is completely processed within Iu.
5: return Return the constructed schedule S ′.

We now show that the cost of the schedule S ′ returned by the algorithm is at
most a factor 1 +O(ε) larger than the cost of S. To do so we need a few definitions.

Definition 3.2. Given a weight schedule S, its remaining volume function is
defined as

V S(w) :=
∑

j:Cw
j ≥w

vj .

Recall the definition of function f(v) given by (2.1). It is easy to see—even from
the 2D Gantt chart—that

∫∞
0 f(V S(w))dw corresponds to the cost of the weight

1The stretch interval procedure also applies to preemptive settings by interpreting each piece of
a job as an independent job.

D
ow

nl
oa

de
d 

07
/0

5/
18

 to
 1

34
.1

02
.1

07
.1

25
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1552 NICOLE MEGOW AND JOSÉ VERSCHAE

schedule S. Also, notice that f(v) is nondecreasing, so that V S(w) ≤ V S′
(w) for all

w ≥ 0 implies that the cost of S is at most the cost of S ′.
Definition 3.3. For a given w, let Ij(w) be equal to 1 if the weight schedule

processes j at weight w, and 0 otherwise. Then, χj(w) := (1/wj)
∫∞
w Ij(w

′)dw′ cor-
responds to the fraction of job j processed after w. The fractional remaining volume
function of a weight schedule S is defined as

V S
f (w) :=

∑
j:j is light

χj(w) · vj +
∑

j:j is heavy,Cw
j ≥w

vj for all w ≥ 0.

Intuitively, this function is similar to the (nonfractional) remaining volume function
with the difference that it treats light jobs as “liquid.” Also, notice that V S

f (w) ≤
V S(w) for all w ≥ 0.

Lemma 3.4. Let S be a weight schedule and S ′ be the output of Algorithm Smith
in Weight Space on input S. Then the cost of S ′ is at most a factor 1 +O(ε) larger
than the cost of S.

Proof. Let Si be the schedule constructed after step i of the algorithm for each
i ∈ {1, 2, 3, 4}. In particular, S1 schedules only heavy jobs and S4 = S ′. First we

observe that for any given w ≥ 0, V S2

f (w) is a lower bound on V Ŝ
f (w) for any schedule

Ŝ that coincides with S2 on the heavy jobs. This follows by a simple exchange
argument, since the greedy Smith-type rule in step 2 chooses the job that packs as
much volume as possible in the available weight among all light jobs. We conclude
that V S2

f (w) ≤ V S
f (w) for all w.

Observe that applying stretch intervals can delay any piece of a job by at most
a factor (1 + ε)2. Therefore V S3

f (w) ≤ V S2

f ((1 + ε)−2w). Also, in step 4 pieces

of jobs are only moved backwards and thus V S4

f ≤ V S3

f . Finally, we notice that
each of the light jobs in S4 is processed completely within an interval Iu, and thus
V S4(w) ≤ V S4

f ((1 + ε)−1w).
Combining all of our observations we obtain that

V S4((1 + ε)3w) ≤ V S4

f ((1 + ε)2w) ≤ V S3

f ((1 + ε)2w)

≤ V S2

f (w) ≤ V S
f (w) ≤ V S(w) for all w ≥ 0.

Taking the function f(·) and integrating implies that

∫ ∞

0

f(V S4((1 + ε)3w))dw ≤
∫ ∞

0

f(V S(w))dw.

Finally, the right-hand side of this inequality is the cost of S, and a simple change of
variables implies that the left-hand side is (1 + ε)−3 times the cost of S ′ = S4. The
lemma follows.

The next corollary follows directly from our previous result.

Corollary 3.5. At a loss of a factor 1 +O(ε) in the objective function, we can
assume the following. For a given interval Iu, consider any pair of jobs j, k whose
weights are at most ε2|Iu|. If both jobs are processed in Iu or later and vk/wk ≤ vj/wj,
then Cw

j ≤ Cw
k .
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3.4. Localization. The objective of this section is to compute, for each job
j ∈ J , two values rwj and dwj so that job j is scheduled completely within [rwj , d

w
j ) in

some (1 +O(ε))-approximate weight schedule. We call rwj and dwj the release weight
and deadline weight of job j, respectively. Crucially, we need that the length of the
interval [rwj , d

w
j ) is not too large, namely, that dwj ∈ O(poly(1/ε)rwj ). Such values can

be obtained by using Corollary 3.5 and techniques from [1]. The release and deadline
weights will be the key to finding compact sets F̃u in the next subsection.

We start by rounding the weights of the jobs to the next integer power of 1 + ε,
which increases the objective function by at most a factor 1 + ε. To define the
release and deadline weights, we consider an initial value for rwj and then increase its
value iteratively. We will restrict ourselves to values of rwj that are integer powers of
1 + ε. Consider an arbitrary weight schedule. Recall that for a job with completion
weight Cw

j , the weight stretch subroutine (section 3.2) increases the completion weight
(1+ε)Cw

j and, hence, the starting weight to Sw
j = εCw

j . Applying the procedure twice
we get a solution that satisfies Sw

j ≥ ε(1 + ε)Cw
j ≥ ε(1 + ε)wj . Thus, we can safely

define rwj as εwj rounded up to an integer power of 1 + ε.
We now show how to adapt techniques from [1] used for time schedules. Let Ju

be the set of all jobs with rwj equal to (1 + ε)u−1. We partition Ju into light and

heavy jobs, depending on if their weight is smaller or larger than ε2|Iu|. Note that a
heavy job in Ju can have weights w with ε2|Iu| < w ≤ 1/ε(1 + ε)u−1, where the last
inequality follows since rwj ≥ εwj . Therefore, since we are assuming that the weights
of jobs are integer powers of 1 + ε, for a fixed u we only need to consider heavy jobs
with weights

w ∈ Ωu :=

{
(1 + ε)i : ε2|Iu| < (1 + ε)i ≤ (1 + ε)u−1

ε
, where i ∈ Z

}
.

Crucially, note that |Ωu| ∈ O(log1+ε 1/ε) ⊆ O(1/ε · log 1/ε). Based on this we
give the following decomposition of the set of jobs with a given release weight.

Definition 3.6. Given release weights for each job, we define for each u the set
Ju = {j : rwj = (1 + ε)u−1}. Additionally, we decompose Ju into a set of light jobs

Lu := {j ∈ Ju : wj ≤ ε2|Iu|}, and sets Hu,w = {j ∈ Ju : wj = w} of heavy jobs of
weight w for each w ∈ Ωu.

Now we consider all jobs in Lu. If w(Lu) is larger than (1 + ε2)|Iu| then some
jobs in Lu will have to start in Iu+1 or later. By Corollary 3.5 we can greedily choose
the set of possible jobs with starting weight in Iu, and increase the release weight of
the rest. Similarly, since the weight of each job in Hu,w is the same, we can always
give priority to jobs with the largest work volume. With this idea we can show the
following lemma.

Lemma 3.7. We can compute in polynomial time release weights rwj for each job
j such that there exists a (1+O(ε))-approximate weight schedule respecting the release
weights and for any interval Iu we have that w(Ju) ∈ O(1/ε3 · log 1/ε · |Iu|). And this
weight schedule satisfies the property of Corollary 3.5.

Proof. Initialize rwj , as εwj rounded up to an integer power of (1 + ε) and let
Ju, Lu, and Hu,w be defined as above. By Corollary 3.5 we know that within an
interval Iu we can order light jobs and process a job with largest vj/wj ratio. Thus, if
the total weight of jobs in Lu is larger than (1+ ε2)|Iu| we increase the release weight
of a job j∗ ∈ argminj∈Lu vj/wj to (1 + ε)u. Note that after doing this j∗ does not
belong to Lu anymore. We iterate this procedure until w(Lu) ≤ (1 + ε2)|Iu|.
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We do a similar technique for jobs in Hu,w. If w(Hu,w) > |Iu| + w and |Hu,w|
contains more than one job, then we can delay the release weight of a job j∗ ∈ Hu,w

with smallest vj . This follows by a simple interchange argument, since if there are
two jobs with the same weight then the one with smallest work has smaller (larger)
completion time (weight) in an optimal solution. After modifying the release date of
j∗ this job does not belong to Hu,w anymore.

This way we obtain a set Hu,w with

w(Hu,w) ≤ |Iu|+ w ≤ |Iu|+ 1

ε
(1 + ε)u−1 ∈ O(1/ε2) · |Iu|.

We execute the two procedures described above for each u = 0, . . . , ν, where ν =
	log1+ε

∑
j∈J wj
 until the following property holds: for all u ∈ {0, . . . , ν} and w ∈ Ωu

we have that w(Lu) ≤ (1 + ε2)|Iu| and w(Hu,w) ∈ O(1/ε2) · |Iu|. The result follows
since |Ωu| ∈ O(1/ε · log 1/ε).

We use the previous lemma to define the deadline weights by using the following
idea. For s large enough (but constant), stretch intervals creates enough idle weight
in Iu+s to fit all jobs released at (1 + ε)u that have not yet finished by (1 + ε)u+s+1.
This allows us to apply Observation 2.1.

Lemma 3.8. We can compute in polynomial time values rwj and dwj for each j ∈ J
such that the following properties hold:

(i) there exists a (1 + O(ε))-approximate weight schedule that runs each job j
within [rwj , d

w
j );

(ii) there exists a constant s ∈ O(log(1/ε)/ε) such that dwj ≤ rwj · (1 + ε)s;
(iii) rwj and dwj are integer powers of (1 + ε);
(iv) within each, Lu jobs are processed following the Reverse Smith’s rule; and
(v) the values rwj and dwj are independent of the speed of the machine.

Proof. Consider the release weights given by the previous lemma and consider
the associated sets Ju for each u. Then, since w(Ju) ∈ O(1/ε3 · log 1/ε · |Iu|), there
exists an integer s ∈ O(log1+ε(1/ε

4 · log 1/ε)) ⊆ O(log(1/ε)/ε) such that w(Ju) ≤
ε|Iu+s−1|/(1 + ε).

Consider now the (1 + O(ε))-approximate solution obtained from the previous
lemma (which, by construction, also satisfies the property of Corollary 3.5). By
construction of rwj , we can assume that the starting weight of j in this schedule is at
least rwj . Now we apply stretch intervals. This creates ε|Iu+s−1|/(1 + ε) idle weight
in interval Iu+s−1, unless there was one job completely covering Iu+s−1. If that is
not the case, then we can move all jobs in Ju with starting weight in Iu+s or larger
to be completely processed inside Iu+s−1. By Observation 2.1, doing this can only
increase the objective function by a 1 + O(ε) factor. Similarly, if there was a job k
completely covering Iu+s−1, then the idle weight that Iu+s−1 should have contained
can be considered to be just before the starting weight of k. In this case we can move
all jobs in Ju that were being processed after Iu+s−1 to just before Sw

k .
In either case we constructed a solution where each job in Ju is completely pro-

cessed in [(1+ε)u−1, (1+ε)u+s−1). Properties (i)–(iii) in the lemma follow by defining
dwj = (1 + ε)u+s−1 = rwj (1 + ε)s for each job j ∈ Ju. Also property (iv) follows since
our original schedule satisfies the property of Corollary 3.5 and our modification does
not change the relative order of jobs in Ju. Finally (v) follows since while defining rwj
and dwj we never used the speed of the machine.
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3.5. Compact search space. Given the job classification and localization in
the previous subsections, we are now ready to reduce the running time of the DP in
section 3.1 to polynomial time. To that end, recall the definition of families of job
sets Fu. We will define a constant size version of it, F̃u. Instead of describing a set
S ∈ F̃u, we describe R = J \ S, that is, the jobs with completion weights in Iu+1 or
later. That is, we define a set Du that will contain the complements of sets in F̃u. In
order to define Du we use the release and deadline weights given by Lemma 3.8. If
R ∈ Du, then R must contain all jobs j ∈ R := {k ∈ J : rwk ≥ (1 + ε)u}.

Observation 3.9. Each set R ∈ Du is of the form R′ ∪R, where every job j ∈ R′

has rwj ≤ (1 + ε)u−1.

Thus we only need to describe all possibilities for R′. For a job j ∈ R′ we
can assume that dwj ≥ (1 + ε)u+1. Therefore, by Lemma 3.8, we have that rwj ≥
(1 + ε)u+1−s, where s ∈ O(log(1/ε)/ε).

Observation 3.10. Each set R = R′ ∪R ∈ Du is of the form
(⋃u

v=u+2−s R
′
v

) ∪R,
where R′

v := {j ∈ R′ : rwj = (1 + ε)v−1}.
Then, we aim to find a collection of subsets that can play the role of R′

v. If
the size of this collection is at most a constant number k, we could conclude that
|Du| ≤ ks−1 = kO(log(1/ε)/ε).

In order to do so, recall that Jv denotes the set of all jobs with release weights
equal to (1 + ε)v−1, and that we can write Jv = Lv ∪ (

⋃
w Hv,w), where w ∈ Ωv and

|Ωv| ∈ O(log1+ε 1/ε). Thus, defining R′
v,w := R′

v ∩ Hv,w we can further decompose
R′

v as (R′
v ∩Lv)∪ (

⋃
w R′

v,w). Now notice that R′
v,w is a subset of Hv,w which, as seen

in the proof of the next observation, has a very simple structure.

Observation 3.11. Without loss of generality, we can restrict ourselves to consider
sets R′

v,w among O(1/ε2) distinct options.
Proof. Let w ∈ Ωv. Each job in Hv,w has weight w and, as seen in the proof of

Lemma 3.7, we have that w(Hv,w) ≤ |Iv|+w. Thus Hv,w contains at most 1+ |Iv|/w
many jobs. Since by the definition of Hv,w we have that w ≥ ε2|Iv|, we obtain that
|Hv,w| ∈ O(1/ε2). Moreover, all jobs in Hv,w has the same weight w and the same
release weight. Therefore, we know that these jobs are ordered by their work volume
in an optimal solution. Thus, we can restrict ourselves to sets R′

v,w that respect this
order. The observation follows since there are at most |Hv,w| + 1 ∈ O(1/ε2) many
sets that respect this order.

Given v, the index w ranges over |Ωv| ∈ O(log(1/ε)/ε) many values. Thus the follow-
ing holds.

Observation 3.12. For each value v, the set
⋃

w R′
v,w can be chosen over

(1/ε2)O(log(1/ε)/ε) = 2O(log(1/ε)2/ε) many alternatives.

We use a similar argument for R′
v∩Lv. Indeed, as seen in the proof of Lemma 3.7,

w(Lv) ≤ (1+ε2)|Iv| and jobs in Lv will be processed as light jobs (by Lemma 3.8). We
now show that we can group light jobs together in order to diminish the possibilities
for Lv. This is done as follows. Set jobs in Lv in a list ordered by the Reverse Smith’s
rule, as in Algorithm Smith in Weight Space. Then we greedily find groups of jobs
in Lv by going through the list of jobs from left to right such that each group has its
total weight in [ε2|Iv|, 2ε2|Iv|] (except from the last group that might have smaller
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1556 NICOLE MEGOW AND JOSÉ VERSCHAE

total weight). Recalling that w(Lv) ∈ (1 + ε2)|Iv|, we obtain that this procedure
creates at most O(1/ε2) groups. Let Lv,i be the ith of these groups.

Lemma 3.13. There exists a (1 +O(ε))-approximate weight schedule such that
(i) it satisfies the release and deadline weights of Lemma 3.8;
(ii) in each group Lv,i all jobs are processed consecutively; and
(iii) within each set Lv jobs are processed following the Reverse Smith’s rule.

Proof. Consider the schedule given by Lemma 3.8, and thus within each Jv jobs
follow the Reverse Smith’s rule. Let us fix an interval Iv′ . Within this interval, the
schedule can only process jobs in Jv with v ≤ v′. Within a given Jv we follow the
Reverse Smith’s rule, thus there is at most two sets Lv,i that are partially processed
in Iv′ . They require at most 4ε2|Iv| extra weight within Iv′ in order to be completely
processed in Iv′ . Summing over all v ≤ v′, we obtain that in total we require

4ε2
∑
v≤v′
|Iv| = 4ε3

∑
v≤v′

(1 + ε)v ∈ O(ε|Iv′ |)

extra space in Iv′ . The result follows since we can create enough idle time within Iv′

by applying O(1) times the procedure stretch intervals. We remark that the procedure
described works simultaneously for all intervals Iv′ .

With this lemma, we can find a compact description to R′
v ∩ Lv. Indeed, to

specify R′
v ∩ Lv, i.e., the jobs in Lv that are processed in Iu+1 or later, we just need

to determine the index i such that jobs in Lv,k with k ≥ i are in R′
v and jobs in Lv,k

with k < i are not in R′
v. Since i ranges over O(1/ε2) many options, we obtain the

following.

Observation 3.14. The set R′
v ∩Lv can be chosen over O(1/ε2) different options.

Combining this last observation and Observation 3.12, we obtain that R′
v can

take at most k ≤ 2O(log2(1/ε)/ε) many different options. By Observation 3.10, we
conclude that R′ belongs to a set of size at most ks−1 ≤ 2O(log3(1/ε)/ε2). With this
and Observation 3.9, we can define Du as having size at most 2O(log3(1/ε)/ε2). Finally,
we define F̃u = {R : Rc ∈ Du} for each u.

Lemma 3.15. We can construct in polynomial time a set F̃u, for each u, that
satisfies the following properties:

(i) there exists a (1+O(ε))-approximate weight schedule in which the set of jobs
with completion weight at most (1 + ε)u belongs to F̃u for each interval u;

(ii) the set F̃u has cardinality at most 2O(log3(1/ε)/ε2); and
(iii) the set F̃u is completely independent of the speed of the machine.

With this lemma and the discussion at the beginning of this section we obtain a
PTAS, which is best possible from an approximation point of view, since the problem
is known to be strongly NP-hard [16].

Theorem 3.16. There exists an efficient PTAS for minimizing the weighted sum
of completion times on a machine with given varying speed.

Proof. It remains to argue that the described algorithm is efficient. It is easy to
see that the time for creating sets F̃u is dominated by the time needed to solve the
DP. Moreover, the number of entries of the table is 2O(log3(1/ε)/ε2) · log(∑j wj), and
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the time needed to fill each entry is 2O(log3(1/ε)/ε2) ·n. Therefore the running time2 is

2O(log3(1/ε)/ε2) · log
(∑

j

wj

)
· 2O(log3(1/ε)/ε2) · n = 2O(log3(1/ε)/ε2) · log

(∑
j

wj

)
· n.

4. Speed-scaling for continuous speeds. We now consider the dynamic speed-
scaling setting in which the machine can run at any nonnegative speed s, and it is
part of the scheduling problem to decide upon the speed. Running the machine at
speed s implies a power consumption rate of P (s) = sα for some constant α ≥ 1. The
total energy consumed is the power consumption integrated over time. We study the
problem of minimizing

∑
j wjCj for a given amount of available energy E.

In this setting, we may assume that an optimal solution executes each job at a
uniform speed. This follows directly from the convexity of the power function [31].
Let sj be the speed at which job j is running. Then j’s power consumption is pj = sαj ,

and its execution time is xj = vj/sj = vj/p
1/α
j . The energy that is required for

processing j is

Ej = pj · xj = pj · vj/sj = sα−1
j · vj = vαj /x

α−1
j .

Let π be a sequence of jobs in a schedule, where π(j) is the index of the jth job in
the sequence. We can compute the optimal energy assignment for all jobs in a given
sequence π using a total amount of energy E by a convex program. We rewrite the
objective function as

n∑
j=1

wjCj =

n∑
j=1

wπ(j)

j∑
k=1

xπ(k) =

n∑
j=1

xπ(j)

n∑
k=j

wπ(k)

and define Wπ
π(j) =

∑n
k=j wπ(k). Note that xj =

(
vαj /Ej

)1/(α−1)
, and that Wπ

j is the
total remaining weight just before j is completed in any schedule concordant with π.
Then the problem can be formulated as

(4.1) min

⎧⎨
⎩

n∑
j=1

Wπ
j ·
(
vαj
Ej

)1/(α−1)

:
n∑

j=1

Ej ≤ E, and Ej ≥ 0 ∀j
⎫⎬
⎭ .

This program has linear constraints and a convex objective function. Such pro-
grams can be solved in polynomial time up to an arbitrary precision [23] with the
ellipsoid method. However, the well-known Karush–Kuhn–Tucker (KKT) [7] condi-
tions yield an explicit formula for the optimal energy assignment.

The problem in (4.1) is clearly feasible, for example, choose Ej = 0 for each j ∈
{1, . . . , n}. Moreover, an optimal solution satisfies the first constraint with equality.
Indeed, we allow arbitrary nonnegative speeds and thus arbitrary energy assignments,
and the smallest increase in the assigned energy decreases the total cost. For the
same reason and with a positive energy budget, an optimal solution never assigns
zero energy to any job; hence, Ej > 0 for each job j. With these observations the
KKT conditions reduce to the following.

2We remark that in this expression we consider arithmetic operations to take time O(1), and
thus we neglect the size of the numbers output by the oracle. However considering this effect can
only add a polynomial term on the maximum encoding size of a number output by the oracle. Recall
that we allow efficient algorithms to be of that form.
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1558 NICOLE MEGOW AND JOSÉ VERSCHAE

Lemma 4.1 (KKT conditions). A vector (E1, . . . , En) is an optimal solution to
the convex program in (4.1) if and only if

(a) (E1, . . . , En) is feasible and satisfies
∑n

j=1 Ej = E and Ej > 0 for all j, and
(b) there exists a parameter λ ≥ 0 such that ∇g(E1, . . . , En) + λ · 1 = 0,

where 1 denotes a vector with ones in each coordinate and g is the objective function
in (4.1).

Theorem 4.2. The optimal solution to (4.1) is given by

Ej = vj ·
(
Wπ

j

)(α−1)/α · E
γπ

, where γπ =

n∑
j=1

vj ·
(
Wπ

j

)(α−1)/α
.

Proof. Since we fix a permutation π, we omit the extra script in Wπ
j and γπ

during the rest of this proof. Let (E1, . . . , En) be an optimal solution to (4.1). By
Lemma 4.1(b), there is a λ ≥ 0 such that for every job j ∈ {1, . . . , n} it holds that

Wj · vα/(α−1)
j · −1

α− 1
·E−α/(α−1)

j + λ = 0 ,

which is equivalent to

(4.2) Ej = vj ·W (α−1)/α
j ·

(
1

(α − 1)λ

)(α−1)/α

.

To determine the Lagrange multiplier λ we use Lemma 4.1(a),

E =

n∑
j=1

Ej =

n∑
j=1

vj ·W (α−1)/α
j ·

(
1

(α− 1)λ

)(α−1)/α

= γ ·
(

1

(α − 1)λ

)(α−1)/α

.

Then, we can express the values Ej in (4.2) independently of λ and conclude that

Ej = E · vj ·W
α−1
α

j /γ.

Using this optimal energy assignment (Theorem 4.2), the scheduling problem at
hand reduces to finding the permutation π that minimizes

n∑
j=1

wjCj(E) =

n∑
j=1

Wπ
j ·
(
vαj
Ej

) 1
α−1

=
1

E
1

α−1

·
⎛
⎝ n∑

j=1

vj ·
(
Wπ

j

)α−1
α

⎞
⎠

α
α−1

,(4.3)

where the last equation comes from the definition of γπ (see Theorem 4.2) and stan-
dard transformations. Interestingly, the optimal job sequence is independent of the
energy distribution and, furthermore, it is independent of the overall energy bud-
get. In other words, one scheduling sequence is universally optimal for all energy
budgets. As we will see this sequence is obtained by solving in weight space a (stan-
dard) scheduling problem with a cost function that depends on the power function.
A similar observation was independently made by Vásquez [29].

Theorem 4.3. Given a power function P (s) = sα, there is a universal sequence
that minimizes

∑
j wjCj for any energy budget. The sequence is given by reversing

an optimal solution of the scheduling problem 1| |∑wjC
(α−1)/α
j (on a single machine

of unit speed).
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Proof. Equation (4.3) implies that the optimal job sequence is independent of the
available energy budget E since it only plays a role in the factor outside the sum,
which is independent of the permutation. Since the exponent α/(α − 1) is constant,
the problem of finding the optimal sequence under an optimal energy distribution
reduces to finding the sequence that minimizes

n∑
j=1

vj ·
(
Wπ

j

)(α−1)/α
.

Now recall the reinterpretation that the 2D Gantt chart view offers (see section 2).
Then Wπ

j is the completion weight of job j in a schedule that follows sequence π in
time space (and the reverse order in weight space). We conclude that this problem
is equivalent to the scheduling problem in weight space with varying speed on the
weight axis or general cost function in the weight space. This problem can be directly
translated into minimizing the total weighted completion time on a machine with
varying speed (or the desired form with a generalized cost function) by reinterpreting
weight space as time space. We simply define a new problem in time space with
processing times v′j = wj and weight w′

j = vj , where the objective is to find a

permutation of jobs minimizing
∑n

j=1 w
′
π(j) · f(

∑j
k=1 v

′
π(k)) for f : x → x(α−1)/α.

This is a problem of the desired type. By section 2 it is easy to see that a solution π′

to the new problem in time space has a corresponding solution π in the weight space
with same total cost; π is the reverse of π′.

Thus, the scheduling part of the speed-scaling scheduling problem reduces to a
problem which can be solved by our PTAS from section 3. Since the cost func-
tion f(x) = x(α−1)/α is concave for α > 1, the specialized PTAS in [27] also solves it.
Combining Theorems 4.2 and 4.3 gives the main result.

Theorem 4.4. Let α ≥ 1 be a (constant) rational number. There is a PTAS
for the continuous speed-scaling and scheduling problem with a given energy budget E
for continuous speed and power function P (s) = sα. Indexing jobs in this order,
the (1 + ε)-approximate Pareto curve describing the approximate scheduling cost as a
function of the available energy is given by the right-hand side of (4.3).

Proof. The previous theorem argues that our energy problem is equivalent to

1| |∑wjC
(α−1)/α
j in terms of optimal solutions. However, approximation factors

are not exactly preserved: as can be seen from (4.3), a solution with cost Z for

1| |∑wjC
(α−1)/α
j corresponds to a solution of cost Z

α
α−1 for the speed-scaling prob-

lem. Hence, a β-approximation algorithm for the static-speed problem yields an
approximation factor of βα/(α−1) for the dynamic-speed problem. Since α ≥ 1 is a
constant, taking β = (1+ε) yields an approximation factor of (1+ε)α/(α−1) = 1+O(ε)
for the speed-scaling problem (for small enough ε > 0). Therefore it suffices to give a

PTAS for 1| |∑wjC
(α−1)/α
j .

To apply Theorem 3.16 it suffices to specify the oracle function f . In our case
f(x) = x(α−1)/α might yield irrational numbers. However, since we aim for a PTAS it
suffices to define a polynomial-time oracle f̃ that approximates f within a 1+ε factor.
This can be done with standard techniques from numerical analysis, e.g., Newton’s
method [28].

5. Speed-scaling for discrete speeds. In this section we consider a more
realistic setting, where the machine speed can be chosen from a set of κ different
speeds s1 > · · · > sκ > 0. We also allow the machine to be run at zero speed,
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1560 NICOLE MEGOW AND JOSÉ VERSCHAE

which we assume to induce zero power consumption. For this problem we resolve the
complexity status and show that it is NP-hard even when κ = 2. For arbitrarily many
speed states we give a PTAS, and if κ is constant an FPTAS.

5.1. A PTAS for discrete speeds. To derive our algorithm, we adapt the
PTAS for scheduling on a machine with given varying speed (section 3) and incor-
porate the allocation of energy. Fortunately, many of the techniques to derive that
PTAS, in particular the computation of sets F̃u, are independent of the speed of the
machine. Thus we can use them without modifications.

Consider the power function P (s) to be an arbitrary computable function. We
adopt the same definitions of weight intervals Iu and sets Fu as in section 3. For a
subset of jobs S ∈ Fu and a value z ≥ 0, let E[u, S, z] be the minimum total energy
necessary for scheduling S such that all completion weights are in interval Iu or before
and the scheduling cost is at most z, i.e.,

∑
j∈S xj ·Cw

j ≤ z, where xj is the execution
time under some feasible speed assignment. The recursive definition of a state is as
follows:

E(u, S, z) = min{E(u− 1, S′, z′) + APXu(S \ S′, z − z′) : S′ ∈ Fu−1, S
′ ⊆ S}.

Here APXu(S \S′, z−z′) is the minimum energy necessary for scheduling all jobs
j ∈ S \ S′ with Cw

j ∈ Iu, such that their partial (rounded) cost
∑

j∈S\S′ xj(1 + ε)u is

at most z − z′.

Lemma 5.1. The value APXu(S \S′, z− z′) can be computed in polynomial time.

Proof. We set a linear program (LP) computing APXu(S \ S′, z − z′). Let the
solution variable �i ≥ 0, i ∈ {1, . . . , κ}, denote the length of the time interval in which
the machine is running at speed si. Consider the following LP,

min
κ∑

i=1

�i · P (si),

κ∑
i=1

�i · si =
∑

j∈S\S′
vj ,(5.1)

κ∑
i=1

�i · (1 + ε)u ≤ z − z′,(5.2)

�i ≥ 0.

Here (5.1) guarantees that the total processing volume v(S′ \ S) can be completed,
and (5.2) that the total scheduling cost does not exceed z − z′.

We let the DP fill the table for u ∈ {0, . . . , ν} with ν = 	log1+ε

∑
j∈J wj
 and

z ∈ [1, zUB] for some upper bound such as zUB =
∑

j∈J wj

∑j
k=1 vj/sκ. Then among

all end states [ν, J, · ] with value at most the energy budget E we choose the one with
minimum cost z. Then we obtain the corresponding (1 + ε)-approximate solution for
energy E by backtracking.

This DP has an exponential number of entries. However, we can apply results
from section 3 and standard rounding techniques to reduce the running time.

Theorem 5.2. There is an efficient PTAS for minimizing the total scheduling
cost for speed-scaling with a given energy budget.
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SCHEDULING ON A MACHINE WITH VARYING SPEED 1561

Proof. The DP computes a (1 + ε)-approximate solution in exponential time. In
Lemma 3.15, we showed how to reduce the exponential number of subsets in Fu to a
polynomial number at the cost of a factor 1+O(ε) in the total scheduling cost. Recall
that the sets F̃u given by that lemma are independent of the speed of the machine.
Therefore we can use these sets directly in our setting.

It remains to reduce the number of possible values of cost z ∈ [0, zUB]. At the cost
of a factor 1+ε, we may round up in each state the scheduling cost to the next integer
power of 1+δ with δ = (1+ε)1/ν−1. In each state transition of the DP, we lose up to
a factor 1+δ in the scheduling cost, which amounts to at most a factor (1+δ)ν = 1+ε
under ν state transitions. When restricting to powers of 1 + δ, then the number of
different values in z ∈ [0, zUB] is bounded by O(log1+δ zUB) = O(ν · log zUB/ε). Thus,
the number of states in the table is polynomial. We conclude that the algorithm runs
in polynomial time.

5.2. Speed-scaling with discrete speeds is NP-hard. We show that speed-
scaling for discrete speeds is NP-hard. We provide a reduction based on the problem
of minimizing the total weighted tardiness of jobs with a common due date, 1|dj =
d|∑wjTj, which is known to be NP-hard [32]. Here, Tj = max{Cj−d, 0} denotes the
tardiness of job j. We use the following generalization of this result for our reduction.

Lemma 5.3. The problem of minimizing
∑

wjf(Cj) on a single machine of unit
speed is NP-hard even when f is increasing, convex, and piecewise linear with only
one breakpoint.

Proof. Let ε ≥ 0 and define the cost function

fε(x) =

{
ε · x if 0 ≤ x < d,

x− d+ εd if d ≤ x.

Note that Tj = f0(Cj) is the tardiness of job j. Now we show that, for ε > 0 small
enough, minimizing

∑
j wjTj is equivalent to minimizing

∑
j wjfε(Cj).

Let k ∈ N, and assume that wj , pj , and d are natural numbers for all j. It is known
that the problem of deciding whether there exists a schedule with

∑
j wjTj ≤ k is

NP-hard [32]. Now notice that∑
j

wjfε(Cj) =
∑

j:Cj<d

wjεCj +
∑

j:Cj≥d

(Cj − d+ εd)wj

= ε ·
⎛
⎝ ∑

j:Cj<d

wjCj +
∑

j:Cj≥d

dwj

⎞
⎠+

∑
j

wjf0(Cj).

Defining ε = 1/(d
∑

j wj) ≤ 1 (which can be described with polynomially many bits)
we obtain that

0 ≤
∑
j

wjfε(Cj)−
∑
j

wjf0(Cj) = ε ·
⎛
⎝ ∑

j:Cj<d

wjCj +
∑

j:Cj≥d

dwj

⎞
⎠

< εd
∑
j

wj ≤ 1.

Therefore
∑

j wjf0(Cj) ≤ k if and only if
∑

j wjfε(Cj) ≤ k + 1. We conclude that
minimizing

∑
j wjfε(Cj) is NP-hard, where ε ≤ 1 is considered as part of the input.
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1562 NICOLE MEGOW AND JOSÉ VERSCHAE

Now we can prove the main result.

Theorem 5.4. The problem of minimizing
∑

j wjCj on a single machine for dis-
crete speeds is NP-hard, even if the number of available power levels is 2.

Proof. The problem with k > 2 speed states can be reduced to the case with 2
speed states, by adding dummy states of arbitrarily slow speed. Therefore, we prove
hardness of the case of two speeds s1 > s2.

Consider a scheduling instance on a unit-speed processor with the objective of
minimizing

∑
j wjfε(Cj), where fε is defined in the proof of the previous lemma. We

define an equivalent scheduling instance for minimizing
∑

j wjCj on a machine with
two possible speed states. In the new instance, the job set is the same and the values
wj and vj for each job j are also preserved. Let s1 = 1/ε and s2 = 1. The total energy
budget is E = V + d(1/εα−1 − 1), where V denotes the total work volume,

∑
j vj . A

simple interchange argument shows that in an optimal solution the machine runs at
decreasing speeds. The time point when the speed changes is uniquely defined by the
energy budget and the total work volume. In this case, the machine runs at speed s1
until τ = εd and then it runs at speed s2. Also, the total work volume finished by τ
is τ · s1 = d.

Consider now a schedule without idle time on a machine with the speed profile
just described. Assume that by relabeling the jobs the completion times satisfy that
C1 < C2 < · · · < Cn. Consider scheduling the jobs in a unit speed machine using
the same permutation of jobs. In this new schedule the completion times are C′

j =∑
k≤j vk for all j. If it easy to check that fε(C

′
j) = Cj . We conclude that the problem

of minimizing
∑

j wjfε(C
′
j) is equivalent to minimizing

∑
j wjCj on a machine that

has speed 1/ε in the interval [0, εd] and speed 1 afterwards until all jobs are done. By
Theorem 5.3 both problems are NP-hard, which concludes the proof.

5.3. FPTAS for constantly many discrete speed-states. Consider the set-
ting where the number of different (nonzero) speeds κ is constant. We give an FPTAS
for this case. Again we will use the dual scheduling view and construct a solution in
weight space. Notice that in this problem setting, jobs may run at more than one
speed. We call those jobs split jobs. Our approach is as follows: we first use enumera-
tion to determine split jobs, their position in the weight axis, and the speeds at which
they shall run. Then we design an exponential-time DP that fills the remaining jobs
running at a single speed into the gaps left between the split jobs. We show then how
to reduce the running time of this method to polynomial time by rounding and state
cleaning and losing only a small factor in the scheduling cost.

Using a standard scaling argument, we may assume without loss of generality
that all job weights have integer values.

5.3.1. Guessing split jobs and partition of the weight axis. Recall that in
any optimal solution the speed of the machine is decreasing over time. Thus there are
at most κ− 1 many split jobs each running at a constant number of different speeds.
We show that by restricting the set of possible completion weights to a polynomial
size, we may guess in polynomial time the subset of split jobs, the speeds at which
each of them is running, and their completion weights at an affordable loss in the total
cost. The placement of split jobs in the weight axis leads naturally to a partition of
the weight axis into (at most) κ intervals to which the remaining nonsplit jobs shall
be assigned.
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Lemma 5.5. By increasing the scheduling cost by at most a factor 1 + ε, we may
assume that the completion weights of split jobs are integer powers of 1 + β for β =
(1 + ε)1/n − 1.

Proof. This follows by multiplying the completion weight of each job by 1+β as in
the weight stretch procedure; see section 3. Each time we do this we can decrease the
completion weight of one split job to an integer power of 1+β. This increases the total
cost by a factor 1+β each time, which amounts to at most a factor (1+β)κ−1 < 1+ε
for at most κ− 1 < n split jobs.

Lemma 5.6. By losing at most a factor 1 + ε in the scheduling cost, we can enu-
merate in time O(n2κ−2 · νκ−1) with ν = 	log1+ε

∑
j∈J wj
, the set of split jobs, the

speeds at which they run, and their completion weight.

Proof. The speed of the machine is decreasing and jobs run nonpreemptively.
Hence, a split job will run at two or more decreasing speeds si > si+1 > · · · > si′

while there is no other job running at speed sk with i < k < i′. However, not all
available speeds might be used. There are O(nκ−1) many choices for selecting the set
of (at most) κ− 1 split jobs and the speeds at which each of them is running.

Given a set of jobs we enumerate all possible completion weights for split jobs.
Thereby, we restrict it to powers of 1 + β losing at most a factor 1 + ε in the cost
(Lemma 5.5). There are 	log1+β

∑
j wj
 = 	log(1+ε)1/n

∑
j wj
 ∈ O(n ·ν) many possi-

ble completion weights per job. Thus, in total we have to consider O(nκ−1 · (nν)κ−1)
many choices for split jobs with their speeds and positions in the weight axis.

Consider a fixed choice for split jobs j1, . . . , jκ−1 and their completion weights
Cw

j1
< Cw

j2
< · · · < Cw

jκ−1
. For convenience we add dummy jobs with zero weight and

work volume if there are less than κ−1 split jobs. The set of κ−1 split jobs partitions
the weight space into κ subintervals I1, . . . , Iκ of idle weight between the placed split
jobs. More precisely, Ii = [ai, ai+1 − wji ], where ai = Cw

ji−1
, for i ∈ {2, . . . , κ},

and a1 = 0. Let the last interval Iκ be bounded from above by
∑

j∈J wj − aκ.
Intervals may also be empty.

To obtain a schedule, we have to fill the remaining jobs nonpreemptively in these
idle-weight intervals (keeping the split jobs where they are). All jobs in one subinterval
will run at the same speed. Again, recall that the speeds are only decreasing in time
which means that they are increasing in weight space. We simply guess the uniform
speed s′i associated with Ii such that s′1 ≤ s′2 ≤ · · · ≤ s′κ in accordance with the speeds
of the split jobs between intervals, i.e., for each speed s for a split job ji separating
intervals Ii and Ii+1 must satisfy s′i ≤ s ≤ s′i+1. Notice that because of the dummy
jobs there might be more than one interval with the same speed.

Corollary 5.7. By losing at most a factor 1 + ε in the scheduling cost we can
reduce in time O(κκ ·n2κ−2 ·νκ−1) the speed-scaling problem to nonpreemptive schedul-
ing in weight space in a given set of available idle-weight intervals I1, I2, . . . , Iκ and
speed s′i for jobs being assigned to Ii.

5.3.2. Dynamic program. We construct a DP that finds a partition of the set
of nonsplit jobs into κ subsets each of which is assigned to an individual interval Ii.
The jobs in each individual set are scheduled according to the Reversed Smith rule in
weight space, that is, in nondecreasing order of ratios wj/vj . Let all jobs be indexed
in this order.

The DP generates a state [k, z, y1, . . . , yκ] if there is a feasible schedule of jobs
1, . . . , k, in which the total weight scheduled in interval Ii (excluding the split job) is
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1564 NICOLE MEGOW AND JOSÉ VERSCHAE

yi. The total scheduling cost (including split jobs) is z :=
∑k

j=1 xjC
w
j with xj = vj/s

′
i

being the execution time of a job j in interval i. The value of the state [k, z, y1, . . . , yκ]
is the minimum energy that is necessary for obtaining such a schedule. The DP starts
with the states [0, z, 0, . . . , 0]. For each z-value an LP computes the minimum energy
that is necessary to obtain this scheduling value when scheduling only the set of split
jobs Js. It determines the power assigned to each split job and thus their actual
execution times. Let �ji be the amount of time that split job j ∈ Js is running at a
valid speed s′i (given by Lemma 5.6):

min
∑
j∈Js

κ∑
i=1

�jiP (s′i),

∑
j∈Js

Cw
j ·

κ∑
i=1

�ji ≤ z,

κ∑
i=1

�jis
′
i = vj for all j ∈ Js,

�ji ≥ 0 for all j ∈ Js, i ∈ {1, . . . , κ},
�ji = 0 for all j ∈ Js, s

′
i not valid for j .

After computing the starting states, the DP computes all states by moving from
any state [j − 1, z, y1, . . . , yκ] to at most κ new states [j, z′, y′1, . . . , y

′
κ] by assigning

job j to intervals Ii for i ∈ {1, . . . , κ}. Then
z′ = z +

vj
s′i
· (ai + yi + wj) and y′i = yi + wj and y′i′ = yi′ for i

′ �= i ,(5.3)

provided that y′i ≤ |Ii| −wji , where ji is the ith split job. The value of the new state
is

(5.4) E[j, z, y1, . . . , yκ] = E[j − 1, z, y1, . . . , yκ] +
vj
s′i
· P (s′i).

If there exists another state with less energy value,

E′[j, z, y1, . . . , yκ] < E[j, z, y1, . . . , yκ],

we discard the new one with larger energy value.
An optimal schedule can be obtained by finding a state E[n, z, y1, . . . , yκ] ≤ E

with minimum z and backtracking from that state. Since the z-values are bounded
by zUB :=

∑n
j=1 wj(

∑j
	=1 v	/sκ) and the yi-values are bounded by |Ii|, the running

time of this dynamic programming algorithm is O(n · zUB ·maxi |Ii|κ).
5.3.3. Rounding. In a fully polynomial time algorithm, we can neither afford

to consider all possible objective values z, nor can we consider all possible yi-values.
Consider first the number of possible values z of scheduling cost. We round them

the same way as we have done in the PTAS for an arbitrary number of discrete speeds
in Theorem 5.2. Given the upper bound on the cost, zUB =

∑n
j=1 wj(

∑j
	=1 v	/sκ),

we can reduce the number of possible values in z ∈ [0, zUB] to O(ν · log zUB/ε) =
O(ν · n/ε2) by restricting it to powers of 1 + δ with δ = (1 + ε)1/ν − 1 and lose only
a factor 1 + ε in the scheduling cost. Recall that ν = 	log1+ε

∑
j∈J wj
. Let DPz

denote this DP that rounds only the scheduling cost.
We now take care of the y-values. The idea is to reduce the number of states by

removing those with the same (rounded) objective value and nearly the same total
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weight in all intervals Ii. Among them, we store those that require the minimum
amount of energy. To do so, we use the same discretization of the weight axis as
for guessing the completion weights of split jobs (section 5.3.1). When the DP adds
a job j to some interval Ii and updates the total weight y′i = yi + wj (see (5.3))
then we store only the information on y′i rounded down to the closest integer power
of 1 + β with β = (1 + ε)1/n − 1. Now, among all states with the same rounded
values z, y1, . . . , yκ we store the one with minimum energy consumption. Let DPz,y

denote the modified DP that rounds z- and y-values.
Rounding down the yi-values will incur an error in the computation of scheduling

cost; more precisely, interpreting the solution of DPz,y as a job (weight) assignment
to intervals, then the y-values stored for describing a DP state underestimate the
true weight assigned to an interval, and thus, the DP also underestimates the total
scheduling cost z. We have to show in the following that this error is small compared
to the true value of a feasible solution. We will also show that the energy consumption
computed by the DP corresponds to the exact energy required in a feasible solution.

Lemma 5.8. Suppose that algorithm DPz on an instance with n jobs finds a chain
of states3 [0, z∗0 , 0, . . . , 0], [1, z

∗
1 , y

∗
1,1, . . . , y

∗
κ,1], . . . , [n, z

∗
n, y

∗
1,n, . . . , y

∗
κ,n]. Then the algo-

rithm DPz,y finds for each job j ∈ {1, . . . , n} a state of the form [j, zj , y1,j, . . . , yκ,j]
of energy value at most E[j, z∗j , y

∗
1,j, . . . , y

∗
κ,j] such that

(5.5) yi,j ≤ y∗i,j and zj ≤ z∗j .

Proof. We give a proof by induction on the number of jobs j. For j = 0 the
property is clearly true since DPz,y and DPz have the same starting states.

Suppose the lemma is true for j jobs, and DPz,y obtains state [j, zj , y1,j, . . . , yκ,j]
satisfying the properties of the lemma. Now consider state [j+1, z∗j+1, y

∗
1,j+1, . . . , y

∗
κ,j+1]

that DPz obtained from [j, z∗j , y
∗
1,j , . . . , y

∗
κ,j] according to (5.3) by adding job j +1 to

interval Ii, for some i ∈ {1, . . . , κ}. Similarly, starting from [j, zj , y1,j, . . . , yκ,j], Algo-
rithm DPz,y considers a state that inserts job j + 1 to interval Ii. This yields a new
state [j+1, zj+1, y1,j+1, . . . , yκ,j+1] that satisfies zj+1 = zj+vj+1/s

′
i ·(ai+yi,j+wj+1)

and yi,j+1 as ȳi,j+1 = yi,j + wj+1 rounded down to the nearest power of 1 + β, while
it keeps yi′,j+1 = yi′,j for all i′ �= i.

By the inductive hypothesis, we have that yi,j ≤ y∗i,j and thus

zj+1 = zj + vj+1/s
′
i · (ai + yi,j + wj+1) ≤ z∗j+1.

Moreover, since we round down the value ȳi,j+1 to yi,j+1 we obtain that

yi,j+1 ≤ ȳi,j+1 = yi,j + wj+1 ≤ y∗i,j + wj+1 = y∗i,j+1.

It remains to argue on the value of the state, that is, the energy cost. According
to (5.4) the value of the state as computed by DPz,y is

E[j + 1, zj+1, y1,j+1, . . . , yκ,j+1] = E[j, zj , y1,j, . . . , yκ,j] +
vj+1

s′i
· P (s′i)

≤ E[j, z∗j , y
∗
1,j, . . . , y

∗
κ,j] +

vj+1

s′i
· P (s′i)

= E[j + 1, z∗j+1, y
∗
1,j+1, . . . , y

∗
κ,j+1].

3Chain of states means that, for j = 0, . . . , n−1, state [j+1, z∗j+1, y
∗
1,j+1, . . . , y

∗
κ,j+1] is obtained

from [j, z∗j , y
∗
1,j , . . . , y

∗
κ,j ] by adding job j + 1 according to (5.3).
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We cannot guarantee that state [j + 1, zj+1, y1,j+1, . . . , yκ,j+1] survives. But in
case it does not then we have found another partial solution with the same objective
value zj+1, the same values yi,j+1, and an even smaller state value (energy). This
concludes the lemma.

The Algorithm DPz,y computes an assignment of jobs to weight intervals but it
underestimates the total weight assigned to an interval and thus the scheduling cost.
We show that the true scheduling cost when scheduling according to the solution
found by DPz,y is bounded.

Lemma 5.9. Suppose that algorithm DPz,y on an instance with n jobs finds a
chain of states [0, z∗0 , 0, . . . , 0], [1, z

∗
1 , y

∗
1,1, . . . , y

∗
κ,1], . . . , [n, z

∗
n, y

∗
1,n, . . . , y

∗
κ,n]. Then for

each state [j, z∗j , y
∗
1,j , . . . , y

∗
κ,j], with j ∈ {1, . . . , n}, there exists a feasible partial sched-

ule of split jobs and jobs 1, . . . , j using an energy budget of at most E[j, z∗j , y
∗
1,j, . . . , y

∗
κ,j].

Moreover, if yi,j denotes the total weight of jobs assigned to interval Ii in the partial
schedule and zj is the scheduling cost, then

(5.6) yi,j ≤ (1 + β)j · y∗i,j and zj ≤ (1 + β)j · z∗j .
Proof. We give a proof by induction on j. By definition of the starting state

[0, z∗0 , 0, . . . , 0] there exists a partial schedule of the split jobs with cost at most z∗0 .
Thus the base case of the induction follows.

For a given j, assume that the DP obtains state [j + 1, z∗j+1, y
∗
1,j+1, . . . , y

∗
κ,j+1]

by adding job j + 1 to interval Ii. By the induction hypothesis suppose that there
exists a partial schedule satisfying the claim for jobs 1, . . . , j. We construct the new
schedule for jobs 1, . . . , j + 1 by also adding j + 1 to Ii. The total weight assigned to
interval Ii in this solution is

yi,j+1 = yi,j + wj+1 ≤ (1 + β)j · y∗i,j + wj+1 ≤ (1 + β)j · (y∗i,j + wj+1).

Since DPz,y rounds down the y-value to the next integral power of 1 + β, we have
that

y∗i,j+1 ≥
1

1 + β
· (y∗i,j + wj+1

)
.

And thus we conclude yi,j+1 ≤ (1 + β)j+1 · yi,j+1.
Consider now the total scheduling cost of the feasible schedule after adding job j+

1. In principle it consists of the scheduling cost zj before adding job j + 1 plus the
cost for the new job. However there is a possible extra source for error. Since the
DP rounded down y-values, we cannot guarantee that the total weight assigned to
an interval Ii actually fits into this interval. (Recall, that these intervals are defined
by the placement of the split jobs in the weight axis which is in principle flexible.)
Thus, we may increase the completion weight of already assigned jobs by at most
a factor 1 + β which means increasing zj by this factor. Then, by again using the
induction hypothesis and the already proven first condition in (5.6) we get

zj+1 ≤ (1 + β) · zj + vj+1/s
′
i · (ai + yi,j + wj+1)

≤ (1 + β)j+1 · z∗j + vj+1/s
′
i · (ai + (1 + β)j · y∗i,j + wj+1)

≤ (1 + β)j+1 · (z∗j + vj+1/s
′
i · (ai + y∗i,j + wj+1)

)
= (1 + β)j+1 · z∗j+1.

Concerning the energy estimation, recall that the DP determined the energy cost
precisely according to (5.4). Thus, an inductive argument shows that the constructed
schedule incurs the same energy consumption.

Now we can prove the main result.
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Theorem 5.10. There is an FPTAS for speed-scaling with a given energy budget
for min

∑
wjCj on a single machine with constantly many discrete speeds.

Proof. The FPTAS is as follows: we guess the split jobs, their speeds, and posi-
tions which gives us a partition of the weight space into κ idle-weight intervals (see
section 5.3.1). Then we run DPz,y and take as final solution the assignment of jobs
to intervals that the DP computes.

Let OPT denote the scheduling cost of an optimal solution, and let z(A) denote
the scheduling cost of a solution computed by algorithm A. Lemma 5.8 guarantees
that DPz,y finds a final state of cost z(DPz,y) ≤ z(DPz). We can argue that z(DPz) ≤
(1+ε)2OPT because we lose one factor 1+ε when guessing the split jobs (Lemma 5.6)
and another factor 1 + ε when rounding the z-values in DPz . Taking the assignment
of jobs to intervals as computed by DPz,y, we obtain a feasible scheduling solution of
cost zn ≤ (1+β)nz(DPz,y) ≤ (1+ ε)z(DPz,y), where β = (1+ ε)1/n− 1 (Lemma 5.9).
Thus, we find a feasible solution of scheduling cost at most (1 + ε)3OPT.

Furthermore, Lemmas 5.8 and 5.9 guarantee that our final solution uses as much
energy as an optimal solution. Thus we stay within the energy bound.

It remains to show that the running time is polynomial in the input and 1/ε.
By Lemma 5.6 the enumeration step leading to the partitioning of the weight axis
takes time O(κκ ·n2κ−2 · νκ−1) with ν = 	log1+ε

∑
j∈J wj
. The original (exponential

time) DP runs at time O(n · zUB · maxi |Ii|) (see section 5.3.2). Algorithm DPz,y

rounds the z- and y-values and with the argumentation in section 5.3.3 it thus runs
in time O(n · (ν ·n/ε2) · (n ·ν)) = O(n3/ε2 ·ν2). Since we run the DP for each guess of
split jobs, we obtain a total running time O(κκ ·n2κ+1/ε2 · νκ+1) which is polynomial
in the input and 1/ε.

6. Speed-scaling with release dates on multiple machines. We can use
our results obtained in the dynamic-speed setting to approximate the more general
problem of preemptively scheduling jobs with nontrivial release dates on identical
parallel machines. We use the fact that we can handle jobs without release dates on a
single machine and apply a fast single machine relaxation [10]. For the relaxation, we
assume that we have a single machine that is m time faster than one of the original
machines: at a power level p the single machine runs at speed m · p1/α, while at the
same power level one of the original machines runs at speed p1/α. Thus, if an amount
of energy Ej for job j implies a execution time of xj on an original machine, then the
same energy implies an execution time of xj/m on the fast single machine.

After using our PTAS to solve the single machine relaxation without release dates,
we keep the energy assignments Ej computed in the relaxation and apply standard
preemptive list scheduling on parallel machines respecting release dates. However, the
difficulty lies in bounding the actual execution times xj in our final solution, since we
do not have any information about the optimal execution times x∗

j .
The trick we use is as follows: suppose we knew the total weighted value of

execution times in an optimal schedule
∑

j∈J wjx
∗
j = X∗. Then it is easy to verify that

the fast single machine relaxation with the additional constraint
∑

j∈J wjmx1
j ≤ X∗

on the weighted actual executions times x1
j on the fast machine still gives a lower

bound. Consider the problem of scheduling a job set J (with release dates) on m
parallel machines using an energy budget E. Let Z(X∗) be the cost of an optimal
schedule using energy E and

∑
j∈J wjx

∗
j = X∗. Consider an optimal preemptive

schedule with cost Z1(X
∗) for J without release dates on a single machine of speed m

with energy E and the additional constraint
∑

j∈J wjmx1
j ≤ X∗.
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Lemma 6.1. Z1(X
∗) ≤ Z(X∗).

Proof. The proof goes along the same lines as in the nonenergy setting in [10].
Using time discretization, any parallel machine schedule can be converted into a fea-
sible preemptive schedule on a fast single machine without increasing the total cost
and without changing the total energy given to each job. Thus, an optimal single
machine schedule gives a lower bound.

Given X∗, we can solve the restricted fast single machine relaxation using the
PTAS from Theorem 4.4 (continuous speeds) or Theorem 5.2 (discrete speeds), re-
spectively. We can directly implement the additional constraint of restricting the total
weighted execution time by adding an entry to the corresponding dynamic program-
ming table which tracks this value for each partial solution. To guarantee polynomial
running time, we round the values to powers of 1 + ε at the cost of an additional
factor 1 + ε in the approximation guarantee.

The solution of the fast single machine relaxation gives a priority ordering for the
preemptive list scheduling algorithm to obtain the final parallel machine solution. It
remains the issue that we do not know X∗. Essentially, we run the algorithm (fast
single machine relaxation plus preemptive list scheduling) for every possible value
X∗ ∈ [XL, XU ] for some upper and lower bounds XL, XU that we define below, and
we pick the best feasible solution. Again, to guarantee a polynomial running time
we choose only values that are powers of 1 + ε at the cost of a small increase in the
approximation guarantee.

A simple lower bound on X∗ is obtained by giving each job the maximum amount
of energy E. Recall that xj = (vαj /Ej)

1/(α−1). Thus,

X∗ =
∑
j∈J

wjx
∗
j ≥

∑
j∈J

wj

(
vαj
E

) 1
α−1

=: XL .

An upper bound can be obtained as follows: the optimal execution times x∗
j are

bounded by the completion times in an optimal solution and, thus, X∗ ≤ Opt. The
value Opt obtained on multiple machines is not larger than the optimal solution for
the same job set and energy using just a single machine. Now, for the cost of an op-
timal single machine solution we gave an explicit expression in (4.3). This expression
used a solution-dependent remaining weight parameter Wj which we crudely bound
by n · wmax with wmax := maxj∈J wj . We obtain

X∗ ≤ Opt ≤ 1

E
1

α−1

·
⎛
⎝ n∑

j=1

vj · (n · wmax)
α−1
α

⎞
⎠

α
α−1

=
n · wmax

E
1

α−1

·
⎛
⎝ n∑

j=1

vj

⎞
⎠

α
α−1

=: XU .

A summary of the algorithm is given below.

Theorem 6.2. Fast-Relax+List-Scheduling is a factor 2 + ε approximation for
continuous and discrete speed-scaling when jobs have individual release dates.

Proof. LetX∗ be the total weighted execution time in an optimal parallel machine
schedule with cost Opt. Let ε′ := ε/2, and let X ′ satisfy X∗ ≤ X ′ ≤ (1 + ε′)X∗.
The algorithm returns the minimum cost solution over all weighted completion time
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Algorithm 6.1 Algorithm Fast-Relax+List-Scheduling.

Let ε′ := ε/2.

1: for i = 0 to 	log1+ε′ XU/XL
 do
2: Let X = (1 + ε′)i.
3: Compute an energy assignment Ej and a scheduling solution π for the given

job set J with release dates set to 0 on a single machine running m times as fast
as the original machines, with energy budget E, and respecting the additional
constraint that

∑
j∈J wj ·mvj/sj ≤ X . If there is no solution, then i← i+ 1.

4: Keep the energy assignment and apply preemptive list scheduling according to
π on m machines respecting release dates, i.e., run at any time the m jobs with
the highest priority in π among the available (released, unfinished) jobs.

5: If the total cost of this solution is less than previous solutions then keep it,
otherwise disregard.

6: i← i+ 1.
7: end for

bounds X . Thus, the cost of the final solution is bounded by the total cost of the
solution obtained based on X ′. We show that the cost of this solution is at most
2(1 + ε′)Opt = (2 + ε)Opt.

Let Z1(X) denote the cost of an optimal solution to the fast single machine
problem with imposed constraint

∑
j∈J wj ·mvj/sj ≤ X . Clearly, Z1(X

′) ≤ Z1(X
∗).

Let C1
j (X

′) denote the completion time of job j in a solution to the the fast single
machine problem with imposed constraint X ′ when applying a PTAS (Theorem 4.4
for continuous speeds or Theorem 5.2 for discrete speeds, respectively). Lemma 6.1
and the observation above imply∑

j∈J

wjC
1
j (X

′) ≤ (1 + ε′)Z1(X
′) ≤ (1 + ε′)Z1(X

∗) ≤ (1 + ε′)Opt .

Now consider the final list scheduling solution obtained for bound X ′, and let Cj

denote the completion time of a job j. Recall that the algorithm keeps the energy
assignment from the fast single machine relaxation; thus, the execution time of a job j
is xj = m·x1

j , where x
1
j is the actual execution time of j on the fast single machine. By

construction, a job j starts only processing when the first machine becomes available
after its release date and after starting all jobs k with higher priority in π (denoted
by k <π j). Thus, its completion time is bounded by Cj ≤ rj +

∑
k<πj

xk/m + xj .
Thus, the total cost of the algorithms solution Alg is

Alg ≤
∑
j∈J

wjrj +
∑
j∈J

wj

∑
k<πj

x1
j +

∑
j∈J

wjxj

≤
∑
j∈J

wjrj +
∑
j∈J

wjC
1
j (X

′) +
∑
j∈J

wj ·mx1
j

≤
∑
j∈J

wjrj + (1 + ε′)Opt +
∑
j∈J

wj ·mx1
j .

Now, by construction we have that
∑

j∈J wj ·mx1
j ≤ X ′ ≤ (1+ ε′)X∗. Using, the

obvious lower bound Opt ≥∑j∈J wjrj +X∗, we conclude Alg ≤ 2(1 + ε′)Opt.

7. Conclusion. In this paper we have demonstrated the power of a dual schedul-
ing view for minimizing the total weighted completion time—in particular, when
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scheduling on a machine that may change its speed. Instead of the standard ap-
proach of scheduling along the time axis, we schedule jobs in the weight axis of the
well-known 2D Gantt chart. This change of concept allows us to handle the complex-
ity of machine speed changes. We give several algorithms relying on dual techniques
and show that they guarantee nearly optimal solutions. Most of our results are best
possible in terms of approximation guarantees.

An interesting open question is how to incorporate release dates for the varying-
speed scenario and improve the (4+ ε)-approximation in [14]. While with our current
technique we can almost fully resort to the weight space, release dates would require
maintaining a correspondence between weight and time space.

The most challenging open problem in this context concerns min-sum scheduling
when each job may have its own nondecreasing cost function fj . Any improvement of
the recent (4+ε)-approximation [11] for 1| |∑ fj would be of significant interest. Our
PTAS on a machine of varying speed translates into the equivalent setting of schedul-
ing on a unit-speed machine to minimize a general global cost function

∑
wjf(Cj)

and thus is a tight result for this case.
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