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THE POWER OF RECOURSE FOR ONLINE MST AND TSP∗
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Abstract. We consider online versions of the minimum spanning tree (MST) problem and the
traveling salesman problem (TSP) where recourse is allowed. The nodes of an unknown graph with
metric edge cost appear one by one and must be connected in such a way that the resulting tree or tour
has low cost. In the standard online setting, with irrevocable decisions, no algorithm can guarantee
a constant-competitive ratio. In our model we allow recourse actions by giving a limited budget of
edge rearrangements per iteration. It has been an open question for more than 20 years whether an
online algorithm equipped with a constant (amortized) budget can guarantee constant-approximate
solutions. As our main result, we answer this question affirmatively in an amortized setting. We
introduce an algorithm that maintains a nearly optimal tree when given a constant amortized budget.
Unlike in classical TSP variants, the standard double-tree and shortcutting approach does not give
constant guarantees in the online setting. We propose a nontrivial robust shortcutting technique
that allows translation of online MST results into TSP results at the loss of small factors.
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1. Introduction. In the online minimum spanning tree (MST) problem and
online traveling salesman problem (TSP) we aim at constructing low-cost spanning
trees (resp., tours) for an unknown graph that is revealed online. In each iteration a
new node is revealed, together with all connections to previously known nodes, and
an algorithm must make an irrevocable decision on how to connect it. Such problems
appear naturally in applications related to multicast routing in multimedia distribu-
tion systems, video conferencing, software delivery, and groupware [16, 17]. These
problems—in particular online MST and Steiner tree variants—have been studied
extensively. Here, constant-competitive ratios are not achievable; the best possible
performance ratio is Θ(log t), where t is the number of iterations [11].

However, in many of the above-mentioned applications it is possible to adapt
solutions in some limited way when the node set changes [19, 20]. Such recourse
actions may allow for better solutions. However, a large number of recourse actions—
in particular, a complete reconstruction of solutions—might not be feasible or may
cause unacceptable additional cost. Our goal is to understand the trade-off between
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the amount of adaptivity and the quality of solutions. As a main problem, we want to
determine the amount of recourse that is necessary to allow for provably near-optimal
solutions.

Looking from a different perspective, we construct solutions that satisfy some
adequate concept of robustness, where we measure robustness by the (amortized)
recourse budget that is necessary to guarantee solutions of a particular quality.

More precisely, we consider the online MST problem and online TSP with re-
course: An undirected graph is revealed online. In each iteration a new node becomes
known, together with the connection costs to all previously arrived nodes. We assume
that the graph is complete and that the cost function is metric, i.e., it satisfies the
triangle inequality. The objective is to construct in each iteration a low-cost spanning
tree (resp., tour) of the revealed vertices, without any assumption on the vertices that
might arrive in the future. We measure the quality of the solution sequence with the
standard competitive analysis framework by comparing online solutions to the offline
optimum on the currently known subgraph. Depending on the problem, the current
offline optimum is the MST or the optimal TSP tour.

We control the amount of recourse, i.e., how much the solution changes along
iterations, by means of a budget that limits the number of edges that can be inserted
in each iteration. We say that an algorithm needs budget k if the number of inserted
edges in each iteration is bounded by k. Similarly, the algorithm uses an amortized
budget k if up to iteration t the total number of inserted edges is at most t · k. Notice
that by this definition, algorithms for the standard online MST problem (without
recourse) have a budget of 1, whereas the online TSP without recourse is given a
budget of 2.

It has been a longstanding open question whether a constant budget suffices to
maintain constant-approximate solutions [4, 11]. As our main result we answer this
question affirmatively.

Related work. The online MST and Steiner tree problems have been studied
intensively. The best possible competitive ratio for online algorithms is known to
be Θ(log t), where t is the number of iterations [11]. A simple greedy algorithm that
connects a new node to the current tree through a shortest edge achieves this bound.
Even in the special case of Euclidean distances, there is a lower bound of Ω( log t

log log t )

on the competitive guarantee of any online algorithm [1].
Unlike in stochastic programming [6], where recourse actions are an important

concept when optimizing under limited information, the literature on recourse models
for online optimization seems rather sparse. Regarding our model, we are aware only of
the work by Imase and Waxman [11] that deals with the online minimum Steiner tree
problem with recourse (or dynamic Steiner tree). The model they introduce is slightly
more general, as nodes not only arrive at but may also depart from the terminal
set. For this setting, they give an algorithm that is 8-competitive and performs
in t iterations at most O(t3/2) rearrangements. This translates by our definitions
into an algorithm that requires an amortized recourse budget of O(t1/2). In the more
restricted setting considered in this paper, with no node leaving the terminal set, their
algorithm achieves a competitive guarantee of 4. Furthermore, for the online MST
problem, their algorithm is even 2-competitive when given the mentioned nonconstant
amortized budget. The question of whether there is a constant-competitive algorithm
that uses only a constant (amortized) budget has been left open, but the answer was
conjectured to be affirmative.

A related online MST variant has been studied by Dynia, Korzeniowski, and
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 861

Kutylowski [8]. Here, in each iteration the cost of some edge increases or decreases
by one unit. The task is to maintain a sequence of optimal MSTs with the goal
of minimizing the number of rearrangements. They give a best possible determinis-
tic algorithm that is O(t2)-competitive and a randomized algorithm with expected
competitive ratio O(t log t).

The TSP is one of the most prominent problems in combinatorial optimization [2,
13]. Despite remarkable recent progress, the best known approximation algorithm for
the offline metric TSP is still the classic 3/2-approximation by Christofides [7]. Various
online variants for TSP have been studied. In what is probably the most popular
model, introduced by Ausiello et al. [3], the nodes that must be visited appear online
over time as the salesman traverses its tour. The part of the tour that has not yet been
visited can be adjusted arbitrarily when new nodes arrive, which is in strong contrast
to our model. Small constant-competitive factors were shown when minimizing the
total travel time in a metric space. In another online TSP variant, the nodes appear
when the salesman moves, depending on its position. Whenever a new node is visited,
all its neighbors are revealed. This, again, is in strong contrast to our problem, where
the nodes appear independently of the current tour. The goal is to find a tour for
exploring the entire unknown graph. Constant-competitive algorithms were shown
for planar graphs [12] and, generally, graphs of bounded genus [14], even without any
assumptions on the cost function. Despite the obvious interest in online TSP, we are
not aware of any results for the recourse version considered in this paper.

Our contribution. Our main contribution, presented in section 3, is an online
algorithm for the online MST problem with recourse that is (1 + ε)-competitive, for
any ε > 0, when given an amortized budget of O( 1

ε log 1
ε ). This is the first significant

improvement on the 2-competitive algorithm with nonconstant budget given by Imase
and Waxman [11]. We complement our result by showing that any (1+ε)-competitive
algorithm for the online MST problem needs an amortized budget of Ω( 1

ε ). Thus, our
algorithm is best possible up to logarithmic factors. Using a standard argument, we
immediately obtain a (2+ε)-competitive algorithm for the online Steiner tree problem
with the same amortized budget.

Our algorithm is simple and easy to implement, but it captures subtleties in
the structure of the problem that allow for an improved analysis. Similarly to the
algorithm proposed in [11], we implement the following natural idea: When a new
node appears, we (i) connect it to its closest neighbor and (ii) iteratively perform
edge swaps if they yield a sufficient improvement of the solution. The key difficulty
when implementing this idea is to balance the number of swaps and the cost of the
solution. As our crucial refinement of this approach, we introduce two freezing rules
that effectively avoid performing unnecessary swaps. The first rule prevents removing
edges whose cost is very small. The second rule is more subtle and prohibits an edge
swap if the removed edge can be traced back to a subgraph whose MST has negligible
cost compared to the current MST.

In section 4 we study the nonamortized version of the online MST problem. First,
we notice that our previous results imply that the amortized budget framework is
significantly more powerful than the nonamortized counterpart. Indeed, we contrast
our findings for a constant amortized budget with a simple example showing that no
online algorithm can be (2− ε)-competitive, for any ε > 0, if it uses a nonamortized
constant budget. In a preliminary version of this paper [15] we studied a natural
greedy online algorithm with budget 2. We proved that it has a constant-competitive
ratio if a certain property is satisfied. We also conjectured that this property always
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862 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

holds. We show a family of graphs that does not satisfy this property, falsifying our
conjecture. However, this does not rule out that the algorithm is constant competitive
independently of this property.

A very natural approach to solving the online TSP with recourse is to combine
the algorithms proposed for the online MST problem with the classical double-tree
and shortcutting technique [13]. Indeed, with this technique most offline variants of
TSP are equivalent to MST from an approximation point of view, and performance
guarantees differ only by a factor of 2. Hence, one might be tempted to assume that
the same conversion technique applies directly to the online model with recourse.
However, we observe that this is not true. In section 5 we give examples in which
two trees differ in just a single edge, but the standard shortcutting technique leads
to completely different tours, no matter which Eulerian walk on the doubled tree
edges is chosen. We overcome this difficulty by introducing a robust variant of the
shortcutting technique: We choose the Eulerian tour in a specific way and keep track
of which copy of a node in the Eulerian tour is visited by the TSP tour. With this
robust shortcutting technique we show that any algorithm for the online MST problem
with recourse can be converted to an algorithm for the online TSP by increasing the
competitive ratio by a factor 2 and the budget by a factor 4.

Subsequent work. After the appearance of a preliminary version of this work
[15], Gu, Gupta, and Kumar [9] answered the main open question posed in [11].
Namely, they give a constant-competitive algorithm with budget 2 for the nonamor-
tized case. In contrast to our analysis, their algorithm relies on a clever use of the
primal-dual method. Moreover, they show that increasing the budget from 1 to 2
only every 1/δ iterations suffices to obtain a 2O(1/δ)-competitive algorithm, effec-
tively showing that it is possible to trade solution quality for robustness. Finally,
they are able to improve the analysis for the amortized setting. They show that
the freezing rules of the greedy algorithm are not necessary, and that even without
them the required amortized budget is 2/ε. This result is asymptotically tight by the
Ω(1/ε) bound provided in this work. Subsequently, Gupta and Kumar [10] studied
the dynamic Steiner tree problem, in which terminal nodes might also depart from
the terminal set. For this problem they are able to obtain a constant-competitive
algorithm with constant amortized budget. If there are only node departures, that is,
if no new terminal appears, they can obtain the same result even in the nonamortized
scenario.

2. Problem definitions. An instance of the online MST problem with recourse
is defined as follows. A sequence of nodes v0, v1, . . . arrives online one by one. In
iteration t ≥ 0, node vt appears, together with all edges vtvs for s ∈ {0, . . . , t − 1}.
The cost c(e) ≥ 0 of an edge e is revealed when the edge appears. We assume that
the edges are undirected and that the costs satisfy the triangle inequality, that is,
c(vw) ≤ c(vz) + c(zw) for all nodes v, w, z. For each iteration t, the current graph is
denoted by Gt = (Vt, Et), where Vt = {v0, . . . , vt} and Et = Vt × Vt, that is, Gt is a
complete graph. We are interested in constructing an online sequence of edge subsets
T0, T1, T2, . . . , where T0 = ∅ and for each t ≥ 1 the graph (Vt, Tt) is a spanning tree
of Gt. To simplify notation we will refer to the tree (Vt, Tt) by its set of edges Tt.
We say that the sequence needs budget k if |Tt \ Tt−1| ≤ k for all t ≥ 1. A relaxed
version of this concept is obtained by considering the average or amortized budget k,∑t
s=1 |Ts \ Ts−1| ≤ k · t.

In online TSP with recourse, the nodes of a complete metric graph arrive in the
same online fashion as described above and yield a sequence of graphs G0, . . . , Gt, . . . .
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 863

The objective now is to construct a sequence of TSP tours Q0, Q1, . . . , Qt, . . . for
graphs G0, G1, . . . , Gt, . . . with low cost for each tour, where Q0 = Q1 = ∅. We apply
the same budget constraints as for trees.

The performance of our online algorithms is measured using classic competitive
analysis. Let OPTt be the cost of an MST (resp., TSP tour) of Gt, and for a given
set of edges E denote c(E) :=

∑
e∈E c(e). We say that an algorithm is α-competitive

for some α ≥ 1 if for any input sequence the algorithm computes a solution sequence
X0, X1, . . . such that c(Xt) ≤ α ·OPTt for each t.

3. An online approximation scheme with constant amortized budget.
The main result of this section is a (1 + ε)-competitive algorithm for the online MST
problem with amortized recourse budget O( 1

ε log 1
ε ) for any ε > 0. This improves on a

previous 2-competitive algorithm that requires a nonconstant amortized budget [11].
We first give a lower bound on the amortized budget of any (1 + ε)-competitive algo-
rithm which shows that our budget bound is best possible up to logarithmic factors.
This result also implies that 1-competitive solutions need nonconstant amortized bud-
get.

Theorem 3.1. Any (1 + ε)-competitive algorithm for the online MST problem
requires an amortized recourse budget of Ω( 1

ε ).

Proof. We use a construction similar to that given by Imase and Waxman [11,
Figure 4]. Let us fix ε > 0, and let n := bln(2)/ ln(1 + 2ε)c. Consider an instance
with n + 1 vertices v0, . . . , vn. The costs are chosen so that, for every iteration t,
the cost of any edge incident to vt is a (1 + 2ε) factor smaller than any other edge
previously available. The precise definition is as follows: For each t ∈ {1, . . . , n}
define c(vsvt) = ct := (1 + 2ε)n−t for any s < t. Note that our choice of n implies
that ct ∈ [1, 2] for all t ∈ {1, . . . , n}. Hence, the constructed graph is metric.

Let T0, . . . , Tn be the output of a (1 + ε)-competitive algorithm, and denote by
kt the budget used in iteration t, i.e., kt := |Tt \ Tt−1|. Since up to iteration t− 1 all
available edges have cost at least ct−1, then

c(Tt) ≥ ct · kt + ct−1 · (t− kt) = (ct−1 − ct) · kt + ct−1 · t.

On the other hand, Tt is a (1 + ε)-approximate solution, and therefore

c(Tt) ≤ (1 + ε)OPTt = (1 + ε)ct · t.

Combining these two inequalities and simple algebra implies that

kt ≥ t ·
ct−1 − (1 + ε)ct

ct − ct−1
= t · (1 + 2ε)− (1 + ε)

(1 + 2ε)− 1
=
t

2
,

where the second-to-last equality follows from the definition of ct. Recalling that
n := bln(2)/ ln(1 + 2ε)c, the theorem follows since

n∑
t=1

kt ≥
1

2

n∑
t=1

t =
n(n+ 1)

4
≥ n ln(2)

4 ln(1 + 2ε)
∈ Ω

(n
ε

)
.

In the remainder of this section we prove our main result.

Theorem 3.2. There exists a (1 + ε)-competitive algorithm for the online MST
problem with amortized recourse budget O

(
1
ε log 1

ε

)
.
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864 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

A natural approach to solving the online MST problem is as follows. Let Tt−1 be
the tree solution in iteration t−1. To construct Tt, we first find the closest connection,
edge gt, between the new node vt and Vt−1, and initialize Tt as Tt−1 ∪ {gt}. We
can diminish the cost of Tt by subsequently inserting a low-cost edge f to Tt and
removing the largest edge h in the formed cycle. Indeed, performing this swapping
operation often enough will eventually turn Tt into the optimal solution, i.e., the
MST. The difficulty lies in balancing the number of swaps that increases the budget
and the closeness of the tree to the MST which diminishes the total cost. We find
a balance by introducing two freezing rules that effectively avoid unnecessary swaps
while maintaining low-cost solutions.

The intuition behind these freezing rules is as follows. If at iteration t the optimal
value OPTt is much higher than OPTs for some s < t, e.g., OPTs ∈ O(εOPTt), then
the edges in Ts—whose total cost is approximately OPTs—are already very cheap.
Thus, replacing these edges by cheaper ones would only waste rearrangements. To
avoid technical difficulties we use OPTmax

t := max{OPTs : 1 ≤ s ≤ t} instead
of OPTt to determine whether OPTs ∈ O(εOPTt); note that the value of OPTt
can decrease as new nodes arrive; however, the triangle inequality guarantees that
OPTt ≤ OPTmax

t ≤ 2OPTt.
With this in mind, we define `(t) as the largest iteration with ignorable edges

with respect to OPTmax
t ; i.e., `(t) ≤ t− 1 is the largest nonnegative integer such that

OPTmax
`(t) ≤ εOPTmax

t .

For our first freezing rule we consider sequences of edges (g0s , . . . , g
i(s)
s ), where g0s

corresponds to the greedy edge added at iteration s (that is, an edge connecting vs to
one of its closest neighbors in Vs−1). At the moment when edge g0s is removed from
our solution we define g1s as the element that replaces g0s . In general, gis is the edge
that was swapped in for edge gi−1s . In this way, the only edge in the sequence that

belongs to the current solution is g
i(s)
s . Note that i(s) changes through the iterations,

and thus it depends on t. Notationally, i(s) will refer to the value at the iteration
under consideration in the current context (unless it is stated otherwise). With this

construction, we freeze a sequence (g0s , . . . , g
i(s)
s ) in iteration t if s ≤ `(t). Note that

since `(·) is nondecreasing, once the sequence is frozen by this rule, edge g
i(s)
s will stay

indefinitely in the solution.
Our second freezing rule is somewhat simpler. We skip swaps that remove edges

that are too small, namely, smaller than εOPTmax
t /(t−`(t)). Note that this quantity is

not necessarily monotone, so a sequence that is frozen by this rule might get unfrozen
in a later iteration. Combining these ideas, we propose the following algorithm.

Algorithm Sequence-Freeze

Define T0 = ∅. For each iteration t ≥ 1 do as follows.
1. Let g0t be any minimum cost edge in {vtvs : 0 ≤ s ≤ t− 1}.
2. Initialize Tt := Tt−1 ∪ {g0t } and i(t) := 0.
3. While there exists a pair of edges (f, h) ∈ (Et \ Tt)× Tt such that (Tt ∪
{f}) \ h is a tree, and the following three conditions are satisfied

(C1) c(h) > (1 + ε) · c(f),

(C2) h = g
i(s)
s for some s ≥ `(t) + 1, and

(C3) c(h) > ε
OPTmax

t

t−`(t) ,

set Tt := (Tt ∪ {f}) \ {h}, i(s) := i(s) + 1, and g
i(s)
s := f .

4. Return Tt.
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 865

Conditions (C2) and (C3) correspond to the two freezing rules described above. In
the following we show that this algorithm is (1+O(ε))-competitive and uses amortized
budget O

(
1
ε log 1

ε

)
.

Competitive analysis. To prove that our algorithm is (1 +O(ε))-competitive,
we first show that conditions (C1) and (C3) imply a cost increase of at most a factor
(1 + 3ε). Then we show that skipping swaps because of condition (C2) can increase
the cost of the solution by at most O(εOPTt).

To simplify notation, let us fix an iteration t and set ` := `(t). We partition the

tree Tt into two disjoint subsets, Tt = T old
t ∪ T new

t , where T old
t := {gi(1)1 , . . . , g

i(`)
` }

and T new
t := {gi(`+1)

`+1 , . . . , g
i(t)
t }. We start by bounding the cost of T new

t . To this end
we use the following fact that follows from a classic result on matroid theory; see,
e.g., [18, Corollary 39.12a].

Lemma 3.3. Consider a connected graph G = (V,E), and let T1 and T2 be two
spanning trees for this graph. Then there exists a bijection Ψ : T1 \ T2 → T2 \ T1 such
that each edge e ∈ T1 \ T2 belongs to the unique cycle contained in T1 ∪ {Ψ(e)}.

Lemma 3.4. For each iteration t it holds that c(T new
t ) ≤ (1 + 3 ε)OPTt.

Proof. To bound the cost of T new
t , we consider each edge h ∈ T new

t \T ∗t , where T ∗t
is an MST in iteration t. Each such edge h was not removed from our solutions because
of condition (C1) or (C3) in the algorithm. Since |T new

t | = t − `(t), the total cost
of the edges not removed because of condition (C3) is at most εOPTmax

t ≤ 2εOPTt.
For the edges corresponding to condition (C1), by Lemma 3.3 we can construct a
bijection Ψ : Tt \ T ∗t → T ∗t \ Tt such that each h ∈ Tt is in the unique circuit
contained in Tt ∪ {Ψ(h)}. This implies that (Tt ∪ {Ψ(h)}) \ {h} is a tree. Thus, if
h ∈ T new

t is not removed because of condition (C1), then c(h) ≤ (1 + ε) · c(Ψ(h)),
and thus the total cost of these edges is at most (1 + ε)OPTt. We conclude that
c(T new

t ) ≤ 2εOPTt + (1 + ε)OPTt = (1 + 3ε)OPTt.

For bounding the cost of T old
t , we use induction over the iterations. The inductive

step is given in the following lemma.

Lemma 3.5. Let ε < 1
7 . Consider an iteration t and suppose that c(T`(t)) ≤

(1 + 7ε)OPT`(t). Then it holds that c(T old
t ) ≤ 4 εOPTt.

Proof. Recall that we denote ` = `(t). Notice that whenever the algorithm re-
moves an edge, it is replaced by an edge of smaller cost. Thus, for each s we have that

c(g0s) > c(g1s) > · · · > c(g
i(s)
s ). Since each element in T` must belong to a sequence

g0s , g
1
s , . . . , g

i(s)
s for some s ≤ `, we conclude that c(T old

t ) ≤ c(T`). Using our induction
hypothesis and that ε < 1/7 we conclude that

c(T old
t ) ≤ c(T`) ≤ (1 + 7ε)OPT`

≤ 2OPT` ≤ 2OPTmax
` ≤ 2εOPTmax

t ≤ 4εOPTt,

where the second-to-last inequality follows from the definition of ` = `(t) and the last
one since OPTmax

t ≤ 2OPTt for all t.

The above reasoning implies the following lemma.

Lemma 3.6. Algorithm Sequence-Freeze is (1+7ε)-competitive for any ε < 1
7 .

Proof. Recall that we are considering a fixed value ε < 1/7, and that we want to
show by induction that c(Tt) ≤ (1+7ε) ·OPTt for all t. Clearly this is satisfied for t ∈
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866 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

{0, 1}. For a given t ≥ 2, the induction hypothesis implies that c(T`) ≤ (1+7ε)·OPT`,
and thus Lemmas 3.4 and 3.5 imply that

c(Tt) = c(T old
t ) + c(T new

t ) ≤ 4εOPTt + (1 + 3ε)OPTt.

Amortized budget bound. To bound the amortized budget of the algorithm,
we define kq := |Tq\Tq−1| and prove that for every t ≥ 1 it holds that

∑t
q=1 kq ≤ Dε ·t,

where Dε ∈ O
(
1
ε log 1

ε

)
. To this end, we will first show that the total number of

rearrangements needed in iterations `(t) + 1 to t is proportional to t− `(`(t) + 1). As
shown in the next lemma, this implies our claim on the amortized budget by losing a
factor of 2 on the guarantee.

Lemma 3.7. Assume that
∑t
q=`(t)+1 kq ≤ Cε · (t− `(`(t)+1)) for every t ≥ 1 with

Cε ∈ O( 1
ε log 1

ε ). Then for every t ≥ 1 it holds that
∑t
q=1 kq ≤ 2Cε · t.

Proof. We show by induction that for all t ≥ 1,

t∑
q=1

kq ≤ 2 · Cε · `(t) + Cε · (t− `(t)).

Notice that this directly implies the lemma. Clearly the inequality holds for t = 1
since k1 = 0. Let us fix t ≥ 2, and assume that the inequality is valid for all t′ ≤ t−1.
In particular this holds for t′ = `(t) ≤ t− 1. By denoting `(`(t)) = `2(t), we have

`(t)∑
q=1

kq ≤ 2 · Cε · `2(t) + Cε · (`(t)− `2(t)).

Also, the assumption of this lemma implies that

t∑
q=`(t)+1

kq ≤ Cε(t− `(`(t) + 1)) ≤ Cε(t− `2(t)),

where the last inequality follows since `(·) is nondecreasing. Summing together the
last two inequalities we obtain

t∑
q=1

kq ≤ 2Cε · `2(t) + Cε · (`(t)− `2(t)) + Cε(t− `2(t))

≤ Cε · (t+ `(t)) = 2Cε · `(t) + Cε · (t− `(t)).

With this we showed the induction, and thus the lemma follows.

It remains to prove that the assumption of Lemma 3.7 holds. The two freez-
ing rules, conditions (C2) and (C3), are crucial for this purpose. Indeed, we will

bound the length of the sequences (g0s , . . . , g
i(s)
s ), which will give a direct bound

on
∑t
q=`(t)+1 kq ≤ Cε · (t− `(`(t) + 1)). This can be done since by condition (C1), we

swap edges only when the cost decreases by a factor of (1 + ε), that is, c(gjs) <
c(gj−1s )/(1 + ε) for each j. Thus, the length of this sequence is upper bounded

by log1+ε c(g
0
s) − log1+ε c(g

i(s)−1
s ) + 1. We can bound this quantity further by lower

bounding the cost g
i(s)−1
s with our freezing rules and by exploiting a particular cost

structure of greedy edges g0s .
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 867

tℓ(t) + 1ℓ(t)r
= ℓ(ℓ(t) + 1)

r + 1

OPTmax
t

εOPTmax
t

εOPTmax
ℓ(t)+1

i(s)i′(s)

Fig. 3.1. Sketch of notation. The abscissa denotes the iterations and the ordinate denotes the
value of OPTmax

(·) .

More precisely, consider the values i(s) at the end of iteration t, and let i′(s) be
the value of i(s) at the beginning of iteration `(t) + 1 (and i′(s) := 0 for s ≥ `(t) + 1);
see Figure 3.1. By condition (C2), in iterations `(t) + 1 to t we only touch edges

belonging to {gi
′(s)
s , g

i′(s)+1
s , . . . , g

i(s)
s } for some s ∈ {`(`(t) + 1) + 1, . . . , t}. Let us

denote r := `(`(t) + 1). Then

(3.1)

t∑
q=`(t)+1

kq ≤
t∑

s=r+1

(i(s)− i′(s) + 1) = 2(t− r) +

t∑
s=r+1

(i(s)− 1− i′(s)).

We now upper bound each term i(s)−1−i′(s) for s ∈ {r+1, . . . , t}, which corresponds

to the length of the sequence (g
i′(s)+1
s , g

i′(s)+2
s , . . . , g

i(s)−1
s ).

Lemma 3.8. For each s ∈ {r, r + 1, . . . , t} it holds that

(3.2) i(s)− 1− i′(s) ≤ 1

ln(1 + ε)
·
(

ln c(g0s)− ln c(gi(s)−1s )
)
.

Proof. By condition (C1) whenever we add an edge gjs and remove gj−1s it holds
that c(gjs) < c(gj−1s )/(1 + ε). Then,

i(s)− 1− i′(s) ≤ log1+ε c(g
i′(s)
s )− log1+ε c(g

i(s)−1
s )

≤ log1+ε c(g
0
s)− log1+ε c(g

i(s)−1
s )

=
1

ln(1 + ε)
·
(

ln c(g0s)− ln c(gi(s)−1s )
)
.

In the next claims, we lower bound c(g
i(s)−1
s ) and upper bound

∑t
s=r+1 ln c(g0s).

These bounds applied to inequality (3.2), together with (3.1), will lead to the desired
bound on

∑t
q=`(t)+1 kq.

Proposition 3.9. Due to condition (C3), it holds that either c(g
i(s)−1
s )≥ε2 OPTmax

t

(t−r)
or i(s)− 1− i′(s) ≤ 0.

Proof. Assume that i(s) − 1 > i′(s); otherwise we are done. This implies that

edge g
i(s)−1
s was swapped for edge g

i(s)
s in some iteration q∗ ∈ {`(t) + 1, . . . , t}. By

condition (C3) this implies that

c(gi(s)−1s ) ≥ ε ·
OPTmax

q∗

(q∗ − `(q∗))
≥ ε

OPTmax
`(t)+1

(t− r)
≥ ε2 OPTmax

t

(t− r)
,
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868 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

where the last inequality follows by the definition of `(·) (see Figure 3.1).

Recall that for any s, g0s is a closest connection between vs and any element in
{v0, . . . , vs−1}. Such greedy edges are known to have a special cost structure, as shown
by Alon and Azar [1].

Lemma 3.10 (see [1]). Let e1, . . . , et be a relabeling of the greedy edges g01 , . . . , g
0
t

such that c(e1) ≥ c(e2) ≥ · · · ≥ c(et). Then, c(ej) ≤ 2OPTt

j for all j ∈ {1, . . . , t}.

Lemma 3.11.
∑t
s=r+1 ln c(g0s) ≤ (t− r) · (ln(2 ·OPTmax

t )− ln(t− r) + 1).

Proof. We rename edges {g0r+1, . . . , g
0
t } = {e1, . . . , et−r} such that c(e1) ≥ · · · ≥

c(et−r). Lemma 3.10 implies that c(ej) ≤ 2OPTt

j ≤ 2
OPTmax

t

j for all j. Thus,

t∑
s=r+1

ln c(g0s) ≤
t−r∑
j=1

ln c(ej) ≤ (t− r) ln(2 ·OPTmax
t )−

t−r∑
j=1

ln j.

The lemma follows since for any n ∈ N>0 it holds that
∑n
j=1 ln j ≥

∫ n
1

ln(x)dx =
n ln(n)− n.

The above statement and basic arithmetic imply the desired bound.

Lemma 3.12. For each t ≥ 1 it holds that
∑t
q=1 kq ≤ Dε·t, where Dε ∈ O

(
1
ε log 1

ε

)
.

Proof. Combining (3.2), Proposition 3.9, and Lemma 3.11 in (3.1) we conclude
that

t∑
q=`(t)+1

kq ≤ 2(t− r) +
(t− r) ln(2 ·OPTmax

t ) + (t− r)− (t− r) · ln(ε2 ·OPTmax
t )

ln(1 + ε)

= (t− r) ·

(
2 +

ln
(

2
ε2

)
+ 1

ln(1 + ε)

)
≤ (t− r) · Cε

for some Cε ∈ O
(
1
ε log 1

ε

)
. Hence, the condition of Lemma 3.7 is fulfilled and the

claim of the lemma follows.

Our main result, Theorem 3.2, follows directly from Lemmas 3.6 and 3.12.

4. The nonamortized scenario. For the amortized setting we have seen that
with a sufficient (but constant) budget we can obtain a competitive ratio of 1 + ε.
In the nonamortized setting, however, there can be no (2− ε)-competitive algorithm
with a constant budget.

Proposition 4.1. For every fixed ε > 0 and k ∈ N0, there is no (2 − ε)-
competitive algorithm with budget k.

Proof. Let us fix a value n ≥ 1. Consider a complete graph with vertices v0, . . . , vn
such that c(vtvn) = 1 for all t ≤ n − 1. All other edges vsvt with s, t ≤ n − 1 have
cost 2. Note that this graph is metric and that the MST of Gn is a star centered at
vn whose total cost is n. However, in any sequence of trees, tree Tn−1 can have only
edges of cost 2. Hence, tree Tn has to contain at least n − k edges of weight 2, and
thus c(Tn) ≥ 2(n − k) + k = 2n − k. We conclude that the competitive ratio of the
algorithm is at least (2n− k)/n = 2− k/n, which is larger than 2− ε for sufficiently
large n.
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 869

Recently, Gu, Gupta, and Kumar [9] gave an algorithm with budget 2 and
constant-competitive guarantee. However, the competitive guarantee is a large (un-
specified) constant, and their primal-dual algorithm is relatively intricate and hard
to implement. In contrast, in this section we consider a simple and natural online
algorithm with budget 2, as was also suggested in [11]. In a preliminary version of
this paper [15], we proved that if the sequence of optimal solutions fulfills a particular
Property (P), then the algorithm is constant competitive. We conjectured that (P)
holds for every instance. However, we now show that the conjecture is not true in
general. This does not rule out a constant-competitive ratio that is independent of
Property (P). For the sake of completeness and to encourage further investigations,
we state here the algorithm and Property (P), and we give a counterexample where
(P) does not hold.

Algorithm Greedy

Input : A sequence of complete graphs Gt = (Vt, Et) for t ≥ 1 revealed online with
V0 = {v0} and Vt = Vt−1 ∪ {vt} for all t ≥ 1. A metric cost function c revealed
together with the edges.

Define T0 := ∅. For each iteration t ≥ 1 do as follows.
1. Define gt as any edge of minimum cost connecting vt to any node in Vt−1.
2. If there exists a pair of edges gt, ft satisfying that

• (Tt−1 ∪ {gt, ft}) \ {ht} is a tree,
• ft is adjacent to vt, and

• c(ft) ≤ c(ht)
2 ,

then choose such a pair maximizing c(ht)− c(ft) and return

Tt := (Tt−1 ∪ {gt, ft}) \ {ht}.

3. If there is no such pair of edges, return Tt := Tt−1 ∪ {gt}.

Notice that this algorithm uses a recourse budget of at most 2. We showed in [15]
that if a particular Property (P) holds, then the algorithm is constant competitive.
To state this property we need the following definition: Given a complete graph
G = (V,E) and a nonnegative cost function c on the edges, we say that the graph is 2-
metric if for every cycle C ⊆ E it holds that c(e) ≤ 2·c(C\{e}) for all e ∈ C. Moreover,
for a given real number x we define x+ := max{x, 0} and x− := max{−x, 0}. Note
that x = x+ − x−. Also, denote ∆OPTt := OPTt −OPTt−1.

Property (P). There exists a constant α ≥ 1 satisfying the following. Consider
any input sequence G0, G1, . . . , Gn of the online MST problem with recourse, with a
cost function c′ on the edges such that Gt is 2-metric for all t ≥ 0. If OPTt denotes
the optimal cost of the tree in iteration t for cost function c′, then for all t ≥ 1 it holds
that

∑t
s=1(∆OPTs)− ≤ α ·OPTt.

Theorem 4.2. If Property (P) holds, then Algorithm Greedy is (2 · (α + 1))-
competitive.

In order to show the theorem, we considered I ⊆ N0 as the subset of iterations t
such that Tt = Tt−1 ∪ {gt}. In particular, for all iterations t /∈ I we have that

c(Tt) = c(Tt−1) + c(gt) + c(ft)− c(ht) ≤ c(Tt−1) + 2c(ft)− c(ht) ≤ c(Tt−1).

Setting ∆Tt := c(Tt)− c(Tt−1) for each t, we can decompose the cost of Tt by c(Tt) =
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870 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE∑t
s=1 ∆Tt, and by our previous observation, we have

(4.1) c(Tt) ≤
∑

s∈I,s≤t
∆Ts =

t∑
s=1

(∆Ts)+.

By bounding the right-hand side of this inequality, Property (P) implies the previ-
ous theorem (for details, see [15]). However, the following example shows that this
inequality is not enough to prove that c(Tt) is within a constant factor of the opti-
mal cost. This implies that Property (P) is not true for every graph (although the
property holds for the particular input of the example). A simple modification of the
construction, explained below, gives an explicit input instance that directly disproves
Property (P).

Example 4.3. All of our nodes are points in the real line, and the costs correspond
to the Euclidean distances. The iterations are divided by phases P0, . . . , Pk. Each
phase Pi defines a collection of `i intervals Ii1, . . . , I

i
`i

. In P0 we get a node at 0 and at 1
which defines the interval I01 = [0, 1). In P1 two nodes appear, the first at 1/3 and the
second at 2/3. This breaks I01 into three intervals I11 = [0, 1/3), I12 = [1/3, 2/3), and
I13 = [2/3, 1). Then we operate recursively, so that the intervals of phase Pi are formed
by breaking each interval Ii−1j = [a, b) of Pi−1 into three intervals [a, a + (b − a)/3),
[a+ (b− a)/3, a+ 2(b− a)/3), and [a+ 2(b− a)/3, b). Additionally, two new nodes in
Ii−1j arrive in phase Pi, one at a+(b−a)/3 and the other at a+2(b−a)/3. Note that
the number of nodes is basically tripled in each phase, so that the number of nodes n
at the end of phase k is in O(3k).

Now we show that if we apply our algorithm to this example, then the sum of
the increments of the solution is unbounded. Since the optimal costs of the example
equals 1 in each iteration, this shows that the inequality in (4.1) does not suffice to
prove that the algorithm is constant competitive.

Lemma 4.4. Applying our algorithm to Example 4.3 yields a sequence of solutions
T0, T1, . . . , Tn such that

n∑
t=1

(∆Tt)+ ∈ Θ(log n),

while c(OPTn) = 1 for all n.

Proof. Let Ii = {Ii1, . . . , Ii`i} be the collection of intervals for phase i. We say

that an edge e corresponds to an interval Ii−1j if the endpoints of e correspond to

the extreme points of Ii−1j . We show by induction that at the end of phase Pi the
solution given by the algorithm consists of exactly the edges corresponding to each
interval in Ii. For the base case, note that at the end of P0 the solution output by
the algorithm connects the node 0 with the node 1 and thus satisfies the claimed
property. Let us assume inductively that the property holds at the end of phase Pi−1.
Consider an iteration in phase Pi, where an interval Ii−1j = [a, b) is broken into three
intervals. When the node a + (b − a)/3 arrives, the algorithm simply connects this
node to a and does nothing else. Indeed, adding the edge [a + (b − a)/3, b) implies
that the edge that needs to be removed is [a, b), which is not a valid operation in
the algorithm. Importantly, this implies that the cost of the solution is increased
by (b − a)/3. However, when the node a + 2(b − a)/3 arrives, the algorithm adds
the edges corresponding to [a+ (b− a)/3, a+ 2(b− a)/3) and [a+ 2(b− a)/3, b) and
removes the edge corresponding to Ii−1j = [a, b). This means that the three new
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 871

edges added by the algorithm correspond to the three new intervals [a, a+ (b− a)/3),
[a+(b−a)/3, a+2(b−a)/3), and [a+2(b−a)/3, b). With this we finish the induction.
Moreover, notice that for every phase Pi with {1, . . . , k}, the total contribution of Pi
to
∑n
t=1(∆Tt)+ is exactly 1/3. We conclude that

∑n
t=1(c(Tt)− c(Tt−1))+ = 1 + k/3.

The lemma follows since k ∈ Θ(log n).

To give an explicit instance that disproves Property (P), it suffices to slightly
modify the costs as follows: For any iteration t and edge e that belongs to OPTt but
not to Tt, we double the cost of e. It is easy to check that Tt is an optimal solution for
the new costs. Also the new cost function induces a 2-metric graph, and the optimal
cost remains bounded by 2 in each iteration.

Lemma 4.5. There exist instances for which Property (P) does not hold.

5. Applications to TSP. In this section we consider online TSP with recourse.
In a natural approach we aim at combining our algorithms for the online MST problem
with the classic shortcutting technique [13], which yields a sequence of tours, each with
a cost at most twice the cost of the tree. This implies a (2+ε)-competitive algorithm.
However, bounding the budget is intricate. Obviously, MSTs that differ in few edges
might have quite different Eulerian walks and thus TSP tours. However, even when
adapting the Eulerian walks as much as possible, the standard shortcutting might
lead to very different TSP tours. In fact, we give examples in section 5.1 in which two
trees T, T ′ differ in just one edge and shortcutting any Eulerian walk on (doubled) T ′

in the standard way yields a tour Q′, which differs from Q for T in an unbounded
number of edges.

Our key ingredients for solving this problem in section 5.2 are as follows: In
the case of an edge swap, we decompose the Eulerian walk W corresponding to the
tour Q before the swap into 4 subwalks defined by the swapped edges, which we
concatenate then in an appropriate way. Furthermore, we find a robust variant of the
shortcutting technique: Instead of shortcutting the new Eulerian walk by visiting the
first appearance of a node, we remember the copy of each node that we visit in W
to construct Q, and then we visit the same copy when constructing Q′. In general
we cannot expect to obtain the same tour, but we prove that Q and Q′ differ in at
most 4 edges, which may be necessary when concatenating the subwalks. This will
help us show the following key result.

Theorem 5.1. Consider a sequence of complete metric graphs G0, . . . , Gt, . . .
where Gt = (Vt, Et) and Vt = {v0, . . . , vt}. Assume that in each iteration t we
are given a spanning tree Tt for graph Gt. Then there exists an online algorithm
that computes a sequence of tours Q0, Q1, . . . , Qt, . . . such that c(Qt) ≤ 2 · c(Tt) and
|Qt \Qt−1| ≤ 4 · |Tt \ Tt−1| for all t ≥ 1.

This theorem immediately implies that most of our results for the online MST
problem translate directly into the TSP setting by only increasing the competitive ra-
tio and the budget (resp., amortized budget) by constant factors. In particular, online
TSP admits an online (2+ε)-competitive algorithm with amortized budget O( 1

ε log 1
ε ).

5.1. Critical example and intuition for solution method. We first explain
the intuition to our approach by considering two spanning trees R and R′, where
R′ = (R∪{f}) \ {g} for some edges f /∈ R and g ∈ R. Tree R′ is obtained by a single
edge swap, which is arguably the simplest possible way of modifying R to obtain a new
spanning tree. Thus, for Theorem 5.1 to be true we must at least be able to update
a tour Q obtained from R to a tour Q′ obtained from R′ such that |Q′ \Q| ≤ 4. We
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u

v1

w1

v2

w2

v3

w3

v4

w4

(a) A tree R (solid lines) and a possible tour
obtained by taking shortcuts (dashed lines).

u

v1

w1

v2

w2

v3

w3

v4

w4

(b) A tree R′ = (R ∪ {uv4}) \ {uv1} (solid
lines) and a possible tour obtained by taking
shortcuts (dashed lines).

Fig. 5.1. Example of trees R and R′ and possible tours obtained by taking shortcuts. A trivial
generalization of this example shows that visiting the first copy of each node in the walk might yield
arbitrarily different tours.

begin with the insight that the standard double-tree and shortcutting technique does
not guarantee this.

Given any tree T, we denote by 2 ·T the multigraph obtained by duplicating each
edge in T . It is clear that the graph induced by 2 ·R is Eulerian (each node has even
degree). Therefore, we can construct an Eulerian walk W for it, that is, a sequence of
nodes W = x1, x2, . . . , xr, where x1 = xr and each edge in 2 · R is traversed exactly
once by the walk. Based on this walk, we construct a tour by skipping some nodes
in the list such that each node is visited exactly once (except for the starting node u,
which we visit twice). The standard technique for this is to visit a node when it
appears in the list for the first time. We say that we visit the first copy of a node
in W , which yields a tour Q. However, applying the same strategy to tree R′ might
yield a tour Q′, where |Q′ \Q| is unbounded. This might happen even if the walk W ′

for 2 ·R′ is constructed to be as similar as possible to W .
Consider the example shown in Figure 5.1. On the left-hand side we depict a tree

R (solid lines) and a walk W (dashed lines). To distinguish different copies of a node,
i.e., the different times that a node appears in the list of an Eulerian walk, we use
bars; e.g., v, v̄, and v are copies of the same node. We remark, however, that we do
not make distinctions on edges; e.g., we consider vw to be equal to vw.

Consider one possible Eulerian walk for 2 ·R, e.g.,

W = u, v1, w1, v1, v2, w2, v2, v3, w3, v3, v4, w4, v4, v3, v2, v1, u.

Visiting the first appearance of each node in W yields the tour depicted with dashed
lines in Figure 5.1(a). In Figure 5.1(b) we show a tree R′ (solid lines) that is of the
form (R∪{f})\{g}. Again, we can pick any Eulerian walk W ′ for 2 ·R′ and visit the
first appearance of each node, obtaining a tour Q′. However, it is easy to observe that
for any W ′ this strategy yields a tour Q′ that does not contain any of the edges of the
form wivi+1 ∈ Q. This means that |Q′ \Q| ≥ 3. Generalizing this example by adding
more pairs (vi, wi), we obtain an instance for which |Q′ \Q| is unbounded. It is worth
noting that in this example, changing the starting vertex of the Eulerian tour from u
to v1 would yield a tour Q′ that differs from Q in only one edge. However, a simple
extension of this instance, depicted in Figure 5.2, shows that changing the first node
of the Eulerian tour, even choosing any Eulerian tour, is in general not enough.
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D
ow

nl
oa

de
d 

07
/1

5/
16

 to
 1

29
.1

87
.2

54
.4

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



THE POWER OF RECOURSE FOR ONLINE MST AND TSP 873

v1

w1

v2

w2

v3

w3

v4

w4

v′1

w′
1

v′2

w′
2

v′3

w′
3

v′4

w′
4

(a) A tree R (solid lines) and a possible
tour obtained by taking shortcuts (dashed
lines) to an Eulerian tour of the form
v′4, v1, w1, v1, v2, . . . .

v1

w1

v2

w2

v3

w3

v4

w4

v′1

w′
1

v′2

w′
2

v′3

w′
3

v′4

w′
4

(b) A tree R′=(R∪{v′1v4}) \ {v′4v1} (solid
lines) and a possible tour (dashed lines) ob-
tained by taking shortcuts to an Eulerian
tour of the form v1, w1, v1, v2, . . . .

Fig. 5.2. Example of two trees differing in one edge such that standard shortcutting of a (resp.,
any) walk in the double-tree yields tours differing in Ω(n) edges.

Observation 5.2. There are examples of trees differing in one edge such that stan-
dard shortcutting of any walk in the double-tree yields tours that differ in arbitrarily
many edges.

Our first step to address this problem is to choose a walk W ′ for 2 · R′ that is
“similar” to W . To explain the idea we keep working on the instance of Figure 5.1.
Let us decompose W as

W = u, v1, w1, v1, v2, w2, v2, v3, w3, v3, v4, w4︸ ︷︷ ︸
W1

, v4, v3, v2, v1︸ ︷︷ ︸
W2

, u,

so that W = u, v1,W1,W2, u (we use a comma to denote concatenation of walks).
Based on this decomposition we define W ′ := u,W2,W1, v4, u, where v4 is a new copy
of v4. Clearly W ′ is an Eulerian walk for 2 · R′. The tour obtained by visiting the
first appearance of each node in W ′ is depicted with dashed lines in Figure 5.1(b).
As argued before, visiting the first copy of a node in W and W ′ gives very different
tours. We fix this problem by not visiting the first copy of each node in W ′. Rather,
we remember the copy of each node that we visit in W to construct Q, and then visit
the same copy when constructing Q′. In the following we write in boldface the copies
of nodes that we visit when constructing tour Q:

(5.1) W = u ,v1,w1, v1,v2,w2, v2,v3,w3, v3,v4,w4︸ ︷︷ ︸
W1

, v4, v3, v2, v1︸ ︷︷ ︸
W2

, u.

If, when traversing W ′, we visit the same copies of nodes as in W , that is, we also
choose to visit the nodes in boldface,

(5.2) W ′ = u , v4, v3, v2, v1︸ ︷︷ ︸
W2

,w1,v1,v2,w2, v2,v3,w3, v3,v4,w4︸ ︷︷ ︸
W1

, v4, u,

then we also obtain a Hamiltonian tour Q′. We remark that the copy of node v1 in
W visited when constructing Q does not appear in W ′. Thus, we had chosen to visit
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874 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

one of the remaining copies, namely v1. In this simple example, this strategy yields
a tour Q′ equal to Q. We remark that this is not going to be true in general, but
rather Q and Q′ will differ in only a few edges. Additionally, since we take shortcuts
to construct Q′ we have that c(Q′) ≤ c(2 ·R′) = 2 · c(R′).

5.2. Robust TSP tours. To show formally how to construct robust tours and
prove Theorem 5.1, we first argue on consecutive trees Tt−1 and Tt and then show the
theorem for the entire sequence. We can assume that tree Tt is obtained from Tt−1 by
a series of local changes. Here, a local change means an operation that adds an edge
and removes another if it is necessary. This observation can be formalized as follows.

Lemma 5.3. Consider two spanning trees Tt−1 and Tt for graphs Gt−1 and Gt,
respectively. Let us also denote ` := |Tt \ Tt−1|. Then there exists a sequence of trees
R1, R2, . . . , R` satisfying the following:

• Tree R1 equals Tt−1 ∪ {f1} for some f1 ∈ Tt \ Tt−1 adjacent to vt.
• For all i ∈ {2, . . . , `} there exist elements fi ∈ Tt \ Tt−1 and gi ∈ Tt−1 \ Tt

such that
Ri = (Ri−1 ∪ {fi}) \ {gi}.

• Tree R` equals Tt.

Proof. Assume that Tt \ Tt−1 = {f1, . . . , f`}, where f1 is any edge adjacent to
node vt. We construct trees R1, . . . , R` with the following procedure: Set R1 =
Tt−1 ∪ {f1}; for each i ∈ {2, . . . , `} let gi be any edge in C(Ri−1, fi) ∩ (Tt−1 \ Tt),
where C(Ri−1, fi) is the unique cycle in set Ri−1∪{fi}; set Ri := (Ri−1∪{fi})\{gi}.
We remark that this procedure is well defined and that edge gi must exist for every i;
otherwise tree Tt would contain a cycle. Also, note that R` = Tt, since in every
iteration we add an edge in Tt \ Tt−1 and remove an edge in Tt−1 \ Tt.

With this lemma, it is enough to find an algorithm that is robust against a local
change of the tree. More precisely, assume that we have constructed a tour Qt−1
based on Tt−1. To construct tour Qt we consider trees R1, . . . , R` as in the previous
lemma. Then we derive a procedure for updating tour Qt−1 to a tour Q1, where Q1

is a tour constructed based on tree R1 such that |Q1 \ Qt−1| ≤ 4. After, for each
i ∈ {2, . . . , `} we must update tour Qi−1 to a tour Qi such that |Qi \ Qi−1| ≤ 4. In
each of these steps we construct tour Qi by an appropriate way of shortcutting tour
Ri so that c(Qi) ≤ 2 · c(Ri). By defining Qt := Q` we will obtain that |Qt \Qt−1| ≤
4 · ` = 4 · |Tt \ Tt−1|, implying Theorem 5.1.

Based on this we consider two cases. The first corresponds to updating tour Qt−1
to Q1. This is a somewhat easier case since R1 and Tt−1 differ by only one edge,
namely edge f1. The second case corresponds to updating tour Qi−1 to tour Qi,
which is a more involved operation since Ri is obtained from Ri−1 by swapping a pair
of edges. We now focus on the second case. The first case then follows easily by a
similar argument.

Given a graph G = (V,E), let us consider two spanning trees R and R′, where
R′ = (R ∪ {f}) \ {g} for some edges f /∈ R and g ∈ R. Assume that we have
already computed a walk W = x1, x2, . . . , xr corresponding to 2 ·R. Consider the set
{x1, . . . , xr}, and recall that we consider all of the copies of nodes in W as distinct,
so that there are no repeated elements in this set. Additionally, assume that we have
computed a function I that assigns to each element in {x1, . . . , xr} a number in {0, 1}
such that for each node v ∈ V exactly one copy xi of v satisfies I(xi) = 1. In the case
that I(xi) = 1, we say that I selects xi. This function indicates whether a copy of a
node is visited by our Hamiltonian tour or not (with our visual representation in (5.1)
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s

x1

v

t

w

C1 C2

Fig. 5.3. Sketch of the walk W and its decomposition.

and (5.2), we would write x in boldface if and only if I(x) = 1 for any copy of a node
x appearing in W ). The computed tour Q is defined with the following algorithm.

Algorithm Robust-Tour-Shortcut

Input : A tree R, an Eulerian walk W = x1, . . . , xr for 2 ·R, and a function I that
assigns each element in the set {x1, . . . , xr} a number in {0, 1} such that exactly
one copy xi of v in {x1, . . . , xr} satisfies that I(xi) = 1.

1. Create a walk of the form x`1 , x`2 , . . . , x`|V | , where `i < `j for all i < j
and I(x`i) = 1 for all i.

2. Return
Q := {x`1x`2 , x`2x`3 , . . . , x`|V |−1

x`|V | , x`|V |x`1}.

We first observe that, independently of the chosen function I, the constructed
tour has cost at most twice the cost of the original tree R. This follows from the same
classic argument as shown by Christofides [7].

Observation 5.4. By using any valid function I as input of Algorithm Robust-
Tour-Shortcut, the returned output Q satisfies that c(Q) ≤ 2 · c(R).

We now study how to update the Eulerian walk W to obtain an appropriate walk
W ′ for the new tree R′. Recall that R′ = (R ∪ {f}) \ {g} for some edges f, g, and
assume that f = st and g = vw for some nodes v, w, s, t. Also, note that the set R\{g}
induces two connected components, which we denote by C1 and C2. Assume without
loss of generality that x1, v, s ∈ C1 and t, w ∈ C2. Therefore, the walk W starts in
C1, travels to C2 by using a copy of edge vw, traverses all edges in 2 · R2 restricted
to C2, and then returns to C1 by using the second copy of vw (see Figure 5.3). We
conclude that W is of the form

W = W1, v, w,W2, w, v,W
′
1,

where W1 and W ′1 only touch nodes in C1 and W2 is a closed Eulerian walk for 2 ·R
restricted to C2. This implies that W2 must visit t. Also, notice that either W1 or
W ′1 visits (or both visit) node s. We can assume without loss of generality that W ′1
visits s; otherwise we redefine W as xr, xr−1, . . . , x1 (notice that inverting the order
of W but maintaining function I yields the same Hamiltonian tour). Therefore, we
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876 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

can decompose W as

W = W (x1, v), v,W (w, t),W (t, w), w,W (v, s),W (s, x1),

where walk W (x, y) = x`, x`+1, . . . , xu satisfies that x` is a copy of x and xu+1 is a
copy of y. Based on this decomposition we construct an Eulerian tour for 2 ·R′,

W ′ := W (x1, v),W (v, s), s,W (t, w),W (w, t), t,W (s, x1).

We remark that s and t are new copies of s and t, respectively, which are different from
any copy of these nodes appearing in W . For these copies we define I(s) = I(t) = 0.
Also, notice thatW contains two elements (i.e., copies of nodes) that are not appearing
in W ′, namely v and w. Thus, if function I originally selects one of these elements,
then, for constructing Q′, function I must be updated so that it selects another copy
of v (resp., w). In this case we set I(x) = 1, where x is the first element appearing in
W (v, s) (which is a copy of v) and W (w, t) (which is a copy of w), respectively.

Summarizing, we use the following algorithm to construct a walk W ′ based on W
and I. This algorithm takes as an input the original function I (that we assumed was
used to construct W by Algorithm Robust-Tour-Shortcut) and updates it accordingly.

Algorithm Robust-Walk-Update

Input : A tree R of graph G = (V,E); an Eulerian tour W = x1, . . . , xr (with x1 =
xr) for graph (V, 2 ·R), where 2 ·R is a set of edges obtained by duplicating every
edge in R; a function I that assigns to each element in the multiset {x1, . . . , xr}
a number in {0, 1} such that for each v ∈ V exactly one copy xi of v satisfies that
I(xi) = 1; a tree R′ = (R∪{f})\{h} for some edges f = st /∈ R and g = vw ∈ R.

1. Decompose W into walks such that

W = W (x1, v), v,W (w, t),W (t, w), w,W (v, s),W (s, x1).

Each sequence of nodes W (x, y) = x`, x`+1, . . . , xu satisfies that x` is a
copy of x and xu+1 is a copy of y. If the decomposition is not possible,
then redefine W := xr, xr−1, . . . , x2, x1 and repeat the step.

2. Return a new walk W ′ of the form

W ′ := W (x1, v),W (v, s), s,W (t, w),W (w, t), t,W (s, x1),

where t and s are new copies of nodes t and s, respectively.
3. Set I(t) = I(s) = 0. If I(v) = 1, then set I(x) = 1, where x is the first

node visited by W (v, s) (and thus is a copy of v). Similarly, if I(w) = 1,
then set I(x) = 1, where x is the first node visited by W (w, t) (and thus
is a copy of w).

Now that we have constructed a walk W ′, we derive Q′ by taking shortcuts
in the same way as when constructing Q. That is, we define Q′ as the output of
Algorithm Robust-Tour-Shortcut on input W ′ and I (where I has been updated
by Algorithm Robust-Walk-Update when constructing W ′).

We remark that our construction ensures that when constructing Q and Q′, the
same copies of nodes are taken inside each walk W (x1, v),W (v, s),W (t, w),W (w, t),
and W (s, xr) (except maybe for the first node in W (v, s) and W (w, t)). Therefore,
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THE POWER OF RECOURSE FOR ONLINE MST AND TSP 877

the edges in Q and Q′ picked when traversing each of these five walks are (mostly)
the same. This observation is the key to show the following main lemma, which
summarizes our previous discussion.

Lemma 5.5. Consider two spanning trees R and R′, where R′ = (R ∪ {f}) \ {g}
for some edges f /∈ R and g ∈ R. Assume that Q is the output of Algorithm Robust-
Tour-Shortcut on input R, W, and I, where W is a walk for 2 ·R and I is chosen
arbitrarily. Let W ′ be the output of Algorithm Robust-Walk-Update. Then, if Q′

is the output of Algorithm Robust-Tour-Shortcut on input R′, W ′, and I (where
I was updated by Algorithm Robust-Walk-Update), then

c(Q) ≤ 2 · c(R), c(Q′) ≤ 2 · c(R′), and |Q′ \Q| ≤ 4.

Proof. We just need to show that |Q′ \Q| ≤ 4. Consider any walk

X ∈ {W (x1, v),W (v, s),W (t, w),W (w, t),W (s, x1)},

where X = xh, xh+1, . . . , xu for some positive integers h, u. Consider the copies of
nodes visited by X that are selected by function I, that is, the set {x`1 , . . . , x`q} such
that

h ≤ `1 < `2 < · · · < `q ≤ u,

and given i ∈ {h, . . . , u} we have that I(xi) = 1 if and only if i = `j for some j.
Notice that by construction of Q and Q′, for each i ∈ {h + 1, . . . , u} each edge of
the form x`ix`i+1 belongs to Q and Q′. If X equals W (v, s) or W (w, t), this might
not happen for i = h if the value of I(x), for x being the first element in X, was
modified to 1 in Algorithm Robust-Walk-Update (step 3). Therefore, we consider
these cases separately. With this observation we simply visit the vertices in the order
given by W ′ and see which edges belong to Q′ \ Q. A simple case distinction shows
that |Q′ \Q| ≤ 4. For the sake of completeness we give the details.

We have four different cases, corresponding to the moments in which walk W ′

traverses from W (x1, v) to W (v, s), from W (v, s) to W (t, w), from W (t, w) to W (w, t),
and from W (w, t) to W (s, x1).

1. The first case is further divided into two subcases. Let x be the first element
in W (v, s) (that is, a copy of v). For the first subcase, assume that I(x) is
left unchanged by Algorithm Robust-Walk-Update. Then there can be
an edge in Q′ \Q connecting the last node in W (x1, v) selected by I and the
first node in W (v, s) selected by I. For the second subcase we assume that
the algorithm updates I by setting I(x) = 1. Recall that W is of the form

W = W (x1, v), v,W (w, t),W (t, w), w,W (v, s),W (s, x1)

and that I(x) is updated if and only if v (the element after W (x1, v) in W )
was selected by I. Since

W ′ := W (x1, v),W (v, s), s,W (t, w),W (w, t), t,W (s, x1),

and the algorithm sets I(x) = 1, Q and Q′ contain the edge that connects the
last element in W (x1, v) selected by I and v. Thus, in this subcase we must
only account for an edge in Q′ \ Q that connects the first node in W (v, s)
selected by I (which is a copy of v) and the second node in W (v, s) selected
by I. Since these subcases cannot happen simultaneously they account for at
most one edge in Q′ \Q.
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878 N. MEGOW, M. SKUTELLA, J. VERSCHAE, AND A. WIESE

2. By the discussion before, the second occurrence (if any) of an edge in Q′ \Q
can only be the edge that connects the last node in W (v, s) selected by I
and the first node in W (t, w) selected by I (note that s is by definition not
selected by I).

3. Analogously to the first case, we also distinguish two subcases depending
on the value of I(x) for x being the first element in W (w, t). By the same
argument, the two subcases together account for one edge in Q′ \Q.

4. Finally, the last possible occurrence of an edge in Q′ \Q corresponds to the
edge that connects the last node in W (w, t) selected by I and the first node
in W (s, x1) selected by I (again, t is not selected by I).

We conclude that |Q′ \Q| ≤ 4.

To show Theorem 5.1, we can iterate the algorithmic ideas just presented for each
pair of trees Ri and Ri+1 obtained in Lemma 5.3. As mentioned before, we still need
to determine how to construct a tour based on R1 = Tt−1 ∪ {f1} given a tour Qt−1
for tree Tt−1. We briefly explain how to deal with this case. Assume that we have
a tour Qt−1 constructed as the output of Algorithm Robust-Tour-Shortcut on
input Tt−1, Wt−1, and I. We use a similar (but simpler) approach as before. Recall
that f1 = vvt, where v ∈ Vt−1, and thus vt is a leaf of R1. Thus, if W is of the form

W = W, v, Ŵ , we can define an Eulerian walk W 1 := W, v, vt, v, Ŵ for 2 ·R1, where
v is a new copy of v. Function I is updated so that I(v) = 0 and I(vt) = 1. With this
construction it is easy to observe that applying Algorithm Robust-Tour-Shortcut
on input R1 and the updated function I yields a tour Q1 such that |Q1 \Qt−1| ≤ 2.

We have presented all arguments for proving Theorem 5.1. For the sake of com-
pleteness we present in detail the algorithm claimed in this theorem. In the algorithm
below we use lower indices to indicate iterations in our input sequence (e.g., for trees
T1, . . . , Tt) and upper indices to indicate iterations corresponding to the sequence of
trees R1, . . . , R` as given by Lemma 5.3.

Algorithm Robust-Tour-Sequence

Input : A sequence of complete metric graphs G0, . . . , Gt, . . . , where Gt = (Vt, Et) and Vt =
{v0, . . . , vt}. A spanning tree Tt of graph Gt for each t ≥ 0.

1. Set W1 := v0, v1, v0; I(v0) := 1, I(v1) := 1, and I(v0) := 0; and T1 := {v0v1}.
2. For each t ≥ 2 do the following:

(a) Use the procedure from Lemma 5.3 to create a sequence of spanning trees
R1, . . . , R` for graph Gt satisfying the following properties:
• Tree R1 equals Tt−1 ∪ {f1} for some f1 = vvt ∈ Tt \ Tt−1 with v ∈ Vt−1.
• Tree R` equals Tt.
• For all i ∈ {2, . . . , `} there exist elements fi ∈ Tt \ Tt−1 and gi ∈ Tt−1 \ Tt

such that Ri = (Ri−1 ∪ {fi}) \ {gi}.
(b) Define an Eulerian walk W 1 for 2 ·R1 as follows.

• Assume that f1 = vvt for some v ∈ Vt−1. Then, there exists two walks W

and Ŵ such that Wt−1 = W, v, Ŵ .

• Set W 1 := W, v, vt, v, Ŵ , where v is a new copy of v.
(c) Set I(vt) := 1 and I(v) := 0.
(d) Define tour Q1 as the output of Algorithm Robust-Tour-Shortcut on in-

put W 1 and I.
(e) For all i ∈ {2, . . . , `} do:

i. Define W i as the output of Algorithm Robust-Walk-Update on input
R = Ri−1, W = W i−1, I, and R′ = Ri (note that here I gets updated by
the algorithm).

ii. Define Qi as the output of Algorithm Robust-Tour-Shortcut on in-
put W i and I.

(f) Set Wt := W ` and Qt := Q`.
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We now show that this algorithm fulfills the claim in Theorem 5.1.

Proof of Theorem 5.1. Fix an iteration t ≥ 2 of Algorithm Robust-Tour-
Sequence. Notice thatQt=Q` is the output of Algorithm Robust-Tour-Shortcut
on input W `, where W ` is an Eulerian tour of 2 ·R` = 2 ·Tt. Thus, by Observation 5.4,
we have that c(Qt) ≤ 2 · c(Tt).

Recall that |Tt−1 \Tt| = `. To bound |Qt \Qt−1|, first notice that |Qi \Qi−1| ≤ 4
for all i ∈ {2, . . . , `}. This follows from Lemma 5.5. Also, we have that |Q1\Qt−1| ≤ 2.

To see this, consider walk Wt−1 = W, v, Ŵ . Notice that walks W 1 and Wt−1 visit

nodes in W and Ŵ in the same order. Also, the tours Qt−1 for Wt−1 and Q1 for W 1

visit the same copies of nodes inside W and Ŵ . This implies that |Q1 \ Qt−1| = 2.
With this we conclude that

|Qt \Qt−1| = |Q1 \Qt−1|+
∑̀
i=2

|Qi \Qi−1| ≤ 4 · ` = 4 · |Tt \ Tt−1|.

The theorem just shown, together with Theorem 3.2, directly implies the following
result.

Theorem 5.6. The online TSP on metric graphs admits a (2 + ε)-competitive
algorithm with amortized budget O( 1

ε log 1
ε ) for any ε > 0.

6. Conclusion. For the standard online minimum spanning tree (MST) problem
without recourse the best achievable competitive ratio is Θ(log n). It has been a
longstanding open question whether one can obtain constant-competitive solutions by
allowing a constant budget of recourse actions [4, 11]. In this paper, we affirmatively
answered this question by showing that given a sufficiently large but still constant
budget, one can reduce the competitive ratio from Θ(log n) to 1 + ε in the amortized
setting.

Since the original appearance of this work, many of the original questions by
Imase and Waxman [11] have been answered: It is now known that a nonamortized
budget of 2 (and even less) suffices to maintain a constant-competitive algorithm [9],
and the same result holds for the fully dynamic case (with node deletions) if amor-
tization is allowed [10]. Despite this great advancement many interesting questions
remain open. The question most directly related to this work asks whether a simple
primal algorithm with a small budget, such as Algorithm Greedy in section 4, has a
constant-competitive guarantee. For the fully dynamic case, it is still open whether
there exists a constant-competitive algorithm with a constant budget. Finally, it is
natural to consider the online Steiner forest problem in a setting with recourse. As in
the Steiner tree problem, an online algorithm without recourse can achieve O(log n)-
competitiveness [5], and it is possible that a small budget increase may help to reduce
the competitive guarantee to a constant.
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