
1 23

Journal of Scheduling

ISSN 1094-6136
Volume 15
Number 3

J Sched (2012) 15:295-309
DOI 10.1007/s10951-011-0241-1

On Eulerian extensions and their
application to no-wait flowshop scheduling

Wiebke Höhn, Tobias Jacobs & Nicole
Megow

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC. This e-offprint

is for personal use only and shall not be self-

archived in electronic repositories. If you

wish to self-archive your work, please use the

accepted author’s version for posting to your

own website or your institution’s repository.

You may further deposit the accepted author’s

version on a funder’s repository at a funder’s

request, provided it is not made publicly

available until 12 months after publication.

J Sched (2012) 15:295–309
DOI 10.1007/s10951-011-0241-1

On Eulerian extensions and their application to no-wait flowshop
scheduling

Wiebke Höhn · Tobias Jacobs · Nicole Megow

Published online: 13 July 2011
© Springer Science+Business Media, LLC 2011

Abstract We consider a variant of no-wait flowshop sched-
uling that is motivated by continuous casting in the multi-
stage production process in steel manufacturing. The task is
to find a feasible schedule with a minimum number of in-

terruptions, i.e., continuous idle time intervals on the last
production stage. Based on an interpretation as Eulerian Ex-

tension Problems, we fully settle the complexity status of
any particular problem case: We give a very intuitive opti-
mal algorithm for scheduling on two processing stages with
one machine in the first stage, and we show that all other
problem variants are strongly NP-hard. We also discuss al-
ternative idle time related scheduling models and their justi-
fication in the considered steel manufacturing environment.
Here, we derive constant factor approximations.

The first author is supported by the Deutsche Forschungsgemeinschaft
(DFG) as part of the Priority Program “Algorithm
Engineering” (1307). The second author is supported by a fellowship
within the Postdoc-Programme of the German Academic Exchange
Service (DAAD).

W. Höhn (�)
Technische Universität Berlin, Institut für Mathematik,
Straße des 17. Juni 136, 10623 Berlin, Germany
e-mail: hoehn@math.tu-berlin.de

T. Jacobs
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku,
Tokyo 101-8430, Japan
e-mail: jacobs@nii.ac.jp

N. Megow
Max-Planck-Institut für Informatik, Campus E1 4,
66123 Saarbrücken, Germany
e-mail: nmegow@mpi-inf.mpg.de

Keywords No-wait flowshop · Complexity ·
Approximation algorithms · Machine idle times ·
Continuous casting · Eulerian extensions

1 Introduction

We consider a flowshop scheduling problem that is moti-
vated by a particular application in steel production, the
continuous casting process. Scheduling this process can be
considered as one of the main challenges in steel produc-
tion (Harjunkoski and Grossmann 2001). Generally, a steel-
making process consists of several production stages that la-
dles of steel have to pass beginning in a furnace in which the
steel is melted and ending with the continuous casting ma-
chine where it is solidified to steel slabs. To avoid cooling
of the hot melt, no waiting time is allowed between con-
secutive stages. Depending on the production site, each of
these stages may consist of a single or several identical ma-
chines. The final stage, the casting machine, plays a special
role: the steel must flow continuously into the casting ma-
chine. When the continuous flow is broken—this is called
a strand interruption (or interruption for short)—then the
casting machine must be stopped for maintenance and ex-
tensive cleaning which causes extra cost and a delay in the
entire production. Therefore, practitioners call it their objec-
tive to find a feasible schedule that minimizes the number of
interruptions.

Formulated as a flowshop, we consider a production pro-
cess where n jobs J1, . . . , Jn must pass s production stages
L1, . . . ,Ls . Each job Jj consists of s operations each of
which is dedicated to a specific stage Li on which it must
process for pij time units without preemption. Note that
we consider operations with zero processing time as in-
finitely small operations which require a free machine. Each

Author's personal copy

mailto:hoehn@math.tu-berlin.de
mailto:jacobs@nii.ac.jp
mailto:nmegow@mpi-inf.mpg.de

296 J Sched (2012) 15:295–309

stage Li has mi identical parallel machines available. The
jobs pass the production stages L1,L2, . . . ,Ls in exactly
this order. In a feasible no-wait flowshop schedule, there is
no waiting time allowed between the execution of two con-
secutive operations of the same job.

By the requirements of strand casting, our goal is to pro-
cess jobs in such a way that the number of interruptions,
i.e., the number of continuous idle time intervals on the last
production stage Ls , is minimized. We refer to idle time as
time where a machine is not processing any job during the
actual production process, which means: the time before the
first job and after the last job to be processed on the par-
ticular machine is not considered as idle time. We denote
our objective by G , and we call the problem no-wait flow-
shop scheduling to minimize the number of interruptions.
Following the classical three-field notation (Graham et al.
1979) we denote it by F |nwt |G if there is only a single
processor available on each stage and by FF |nwt |G in the
multiprocessor case, which is also called flexible flowshop.
In case that the number of stages is fixed to s, we denote
the corresponding processor environments by Fs and FFs,
respectively. We also compare the objective G with the stan-
dard makespan objective Cmax, i.e., the completion time of
the last job, and consider models to address both.

No-wait flowshop problems (as well as many other se-
quencing problems) have a natural interpretation as Eulerian
Extension Problems. This view gives structural insights that
lead to very intuitive solution algorithms. A directed multi-
graph G = (V ,E) is called Eulerian if it contains a cycle
visiting each arc exactly once. A Eulerian extension is a set
of additional arcs E′ for a given (not necessarily connected)
multigraph G = (V ,E) such that (V ,E ∪ E′) is Eulerian.
A Eulerian Extension Problem is, generally speaking, the
problem of finding a Eulerian extension minimizing the total
cost of additional arcs E′ according to some cost function.

This problem is very similar to the Rural Postman Prob-
lem (RPP), see e.g. Orloff (1974), Eiselt et al. (1995), in
which we actually determine a Eulerian tour and not only the
arcs that guarantee its existence. While there is a one-to-one
correspondence between optimal solutions of the two prob-
lems, both the runtime complexity and the objective func-
tion are slightly different. In the Eulerian Extension Prob-
lem only additional arcs contribute to the objective function
whereas in the RPP the cost are determined by the entire tour
which gives an additional constant. Although the distinction
is marginal, we would like to insist on it as a conceptual dif-
ference reflected by the name. We show that in the major
solvable case of our problem setting the minimum cost Eu-
lerian extension represents implicitly all optimal solutions,
whereas a single RPP tour corresponds to just a single opti-
mal solution. This property is not only of theoretical interest,
it is also meaningful to practical applications in which often
a secondary optimization criterion plays a role. In this case,

one may choose accordingly from the set of all optimal so-
lutions regarding the first criterion.

1.1 Related work

Most of the existing literature on no-wait flowshop schedul-
ing addresses the objective of minimizing the makespan. For
an extensive survey on various occurrences of no-wait con-
straints in production environments and previous theoreti-
cal work we refer to Hall and Sriskandarajah (1996). The
special case of two-stage scheduling F2 |nwt |Cmax is well
known to be a special case of the so-called Gilmore and
Gomory Traveling Salesman Problem (GG-TSP)—one of
the first and most famous solvable TSP variants—and can
be solved optimally in polynomial time (Gilmore and Go-
mory 1964; Reddi and Ramamoorthy 1972). The complex-
ity status changes if there is more than one processor on one
of the two stages; then the problem becomes strongly NP-
hard (Sriskandarajah and Ladet 1986).

The particular problem of scheduling the continuous
casting process has been investigated from a practical point
of view e.g. in Harjunkoski and Grossmann (2001), Pac-
ciarelli and Pranzo (2004), and Schwindt and Trautmann
(2003), where mathematical programming approaches as
well as meta-heuristics and simulation are considered. To
the best of our knowledge, there is no literature on theoret-
ical investigations on the problem of minimizing the num-
ber of interruptions in a no-wait flowshop. The only related
theoretical work we are aware of enforces interruption-free
scheduling as a hard constraint. In Giaro (2001) and Giaro
and Kubale (2004), the authors give complexity and approx-
imation results for openshop and flowshop problems with
the objective to minimize the makespan when no interrup-
tion is allowed on any machine. This restriction is much
stronger than what we aim for. In our application, idle times
on other stages than the last one, the casting machine, do
not incur extra cost. A more restricted variant of the same
problem is considered in Wang et al. (2005) with only two
production stages and unit processing times on the first stage
such that interruptions can occur only on the second stage.
Even though this processor environment is close to our set-
ting, we do not see how results could transfer between the
makespan minimization problem and our problem of mini-
mizing the number of interruptions.

Several sequencing problems have been solved by inter-
preting them as Rural Postman Problems with particular cost
functions; see e.g. the survey by Eiselt et al. (1995) and
the bibliography by Laporte and Osman (1995). For gen-
eral cost functions RPP is NP-hard (Lenstra and Kan 1976).
A very natural and general solution approach has been in-
troduced in Ball and Magazine (1988) in the context of
circuit board assembly: in a first step, one balances inde-
gree and outdegree of each vertex, and in a second step,

Author's personal copy

J Sched (2012) 15:295–309 297

the strong connectivity is established. The particular algo-
rithm for their cost function applies also to the GG-TSP
and more general TSP variants (Gutin and Punnen 2002;
Kabadi 2002). It is very intuitive and admits a simple cor-
rectness proof, but with the running time O(n2) it is slightly
slower than the algorithms by Gilmore and Gomory (1964)
and Vairaktarakis (2003) which have a worst case computa-
tion time O(n logn). This is best possible (Rote and Woeg-
inger 1998).

1.2 Our contribution

We fully resolve the complexity status of no-wait flow-
shop scheduling to minimize the number of interruptions
for any machine configuration. The crucial ingredient for
both, deriving polynomial time algorithms and showing NP-
hardness, is an interpretation of the scheduling problem as a
Eulerian Extension Problem with an appropriate cost func-
tion.

For two-stage scheduling with single processors, we de-
rive an elegant and fast optimal algorithm. In this case, we
obtain an implicit representation of all optimal solutions in
time O(n logn), from which any particular optimum can be
extracted in time O(n2). Moreover, we solve optimally the
generalized problem FF2 |nwt |G with a single machine on
the first stage, m1 = 1, and m2 arbitrary. Notice that this re-
sult is a sharp contrast to the makespan variant of the same
problem which is known to be strongly NP-hard (Sriskan-
darajah and Ladet 1986).

All other problem variants FFs |nwt |G for any value
of s and any machine configuration m1, . . . ,ms are NP-
hard. The basis for this result is the proof of NP-hardness
for the problem on three stages F3 |nwt |G . Here we es-
tablish the connection to what we call a two-dimensional
Eulerian Extension Problem with a more general cost func-
tion, which could be interpreted as an Extension Problem
in a two-dimensional space. To derive these results, we ac-
tually give reductions to a decision variant of the problem,
i.e., we ask if an interruption-free solution exists. Obviously,
NP-completeness for the decision problem and a potential
optimal value of zero in the optimization variant imply that
no algorithm can yield an approximation guarantee, unless
P = NP.

This inapproximability result for most of the machine ar-
rangements is extremely discouraging. We show that a small
change in the optimization view point can change this situ-
ation. We simply rephrase our objective of minimizing the
number of interruptions as maximizing the number of non-
interruptions. Clearly, the optimal solution does not change,
but the approximability issue does and we give constant ap-
proximation algorithms for this objective.

The objective of minimizing the number of strand inter-
ruption as requested by practitioners might be a reasonable

objective but it completely ignores the makespan of the fi-
nal schedule. We give examples where the makespans of
G -optimal schedules differ by a factor in the order of the
number of stages. This raises the quest for a more general
objective function that combines both, makespan and num-
ber of interruptions. In certain productions, the cost for an
interruption can be translated directly into a minimum delay
time λ; this is the minimum time period for which the last
stage processor must be kept idle in case of an interruption.
For such scheduling scenarios, we consider the objective of
minimizing the makespan Cmax subject to minimum delay
times. For two-stage single processor scheduling we derive
a factor 2 approximation which can be improved for certain
choices of minimum delay time λ.

1.3 Organization of the paper

In Sect. 2 we contrast the new objective G with the classical
one Cmax. We present optimal algorithms for the two-stage
problem with a single machine on the first stage in Sect. 3.
In Sect. 4 follow the inapproximability results for all other
problem variants differentiated by the number of machines
on each stage. Finally in Sect. 5 we discuss two alternative
models and their justification, and we derive constant factor
approximations.

2 Makespan versus interruptions

The no-wait condition in single processor flowshop schedul-
ing generally implies the same job order on each stage. Thus,
idle times are uniquely determined by the job order which
leads to a natural interpretation as an asymmetric Traveling
Salesman Problem (TSP).

This fact has been observed first for the makespan vari-
ant by Piehler (1960): Given an instance of Fs |nwt |Cmax,
we add an auxiliary job J0, having zero processing times
on all stages, and consider a complete directed graph on
this extended set of jobs. The distance between two jobs
is defined as the sum of the processing time of the first
job on the last stage and the idle time between the jobs on
this stage. Deleting the job J0 from a tour of this TSP in-
stance, yields a schedule whose makespan equals the cost
of the tour. In fact, F2 |nwt |Cmax is well known to be
a special case of GG-TSP (Gilmore and Gomory 1964;
Reddi and Ramamoorthy 1972), one of the most famous
solvable subclasses of TSP, where each city i is associ-
ated with two numbers Ai and Bi . The cost for travel-
ing from city i to city j is

∫ Aj

Bi
f (x) dx if Aj ≥ Bi and

∫ Bi

Aj
g(x) dx otherwise, where f,g are integrable functions

satisfying f (x) + g(x) ≥ 0, for any x. Each job Jj of
an instance of F2 |nwt |Cmax can be interpreted as a city

Author's personal copy

298 J Sched (2012) 15:295–309

Fig. 1 Example where an optimal schedule with respect to Cmax (G)

performs very badly with respect to G (Cmax). Instance with n jobs of
F2 |nwt |Cmax with processing times p11 = p2n = ε, p1j = pn−j+2 for

j = 2, . . . , n, and p2j = pn−j for j = 1, . . . , n−1, where pk = p+kε

for some p > 0 and sufficiently small ε > 0

with Aj = p1j and Bj = p2j , and the cost function is of
Gilmore–Gomory type with f ≡ 1 and g ≡ 0.

Similarly, the G -related flowshop scheduling problem
can be formulated as a TSP problem, even though the
cost function is not of Gilmore–Gomory type. We de-
fine the processing time of J0 on the last stage to be
maxj=1,...,n

∑s−1
i=1 pij and 0 on all other stages. Due to the

no-wait constraint, the processing times of any two distinct
jobs Ji, Jj determine whether or not an interruption occurs
when Ji is scheduled directly before Jj . Hence, we can set
the distance of the directed arc between the corresponding
nodes to 1 if an interruption occurs and 0 otherwise. How-
ever, the TSP with distances 0 and 1 is highly intractable; it
is easy to see that it is hard to approximate. Therefore, this
approach motivated by the makespan variant of the prob-
lem does not lead to a straightforward solution for minimiz-
ing G .

The different structure of the problems is also visible in
the example in Fig. 1. An optimal schedule with respect to
one objective may perform very badly for the other, that is,
a schedule with minimum makespan may have n − 1 inter-
ruptions, whereas a schedule for the same instance without
interruptions may have maximum makespan.

Nevertheless, the problem Fs |nwt |G can be reduced to
Fs |nwt |Cmax in the following way. For each k = 0, . . . ,

n − 1 we can verify for an instance I of Fs |nwt |G if
a solution with at most k interruptions exists, using an
optimal algorithm for the corresponding makespan mini-
mization problem on a slightly modified instance. Simply
add k + 1 additional jobs to I with processing time 0 on the
first s − 1 stages and B = max{∑s−1

i=1 pij | j ∈ J } on the fi-
nal stage. A schedule of minimum makespan (k + 1)B +∑

j∈J psj exists if and only if there is a solution for I with
at most k interruptions. Exploring k = 0, . . . , n − 1 via bi-
nary search, we obtain an O(C(I) logn) time algorithm for
computing an optimal schedule where C(I) is the com-
putation time of the optimal algorithm for the makespan
problem. In the single processor two-stage environment, the
algorithms for the GG-TSP (Gilmore and Gomory 1964;
Vairaktarakis 2003) lead to an optimal algorithm with time

complexity O(n log2 n) for minimizing the number of inter-
ruptions.

Notice that this relation between the makespan and the
interruption minimization problem does not generally imply
the same complexity status for both problems.

3 Solving two-stage no-wait flowshop problems

In this section, we present an algorithm for solving the prob-
lem F2 |nwt |G directly in a very natural and intuitive way.
Whereas the approach described in the section above yields
exactly one optimal solution, the alternative approach leads
to a representation of all optimal solutions, which is desir-
able in particular for bicriteria optimization.

In this approach, we interpret the flowshop problem as a
Eulerian Extension Problem where the vertices are labeled
with real numbers. More specific, the vertex labels refer to
processing times, and each job is represented by an arc be-
tween the vertex pair corresponding to its processing times
on the first and second machine. In cases of the same pro-
cessing time occurring more than once, we only add one ver-
tex with the respective label. Additional arcs, we call them
extension arcs, can be inserted in order to make the graph
Eulerian. We will see that the insertion of (u, v) with u < v

accounts for an interruption on the second machine. We call
such extension arcs up arcs, whereas extension arcs (u, v)

with u > v are called down arcs. The number of up arcs in
an optimal Eulerian Extension will correspond to the min-
imum number of interruptions between jobs, and a corre-
sponding optimal schedule can be read off from a Eulerian
tour in this extended graph. Now, we define the G -related
One-Dimensional Eulerian Extension Problem (G -1DEE)
as follows.

Definition 1 (G -1DEE) Given a finite directed multi-
graph G = (V ,E) where the vertices in V are labeled with
distinct real numbers, the problem G -1DEE is to find a Eu-
lerian extension for G minimizing the number of up arcs.

Author's personal copy

J Sched (2012) 15:295–309 299

Let indeg(v) and outdeg(v), v ∈ V , denote the indegree
and outdegree of v, respectively. The following sufficient
condition for a Eulerian graph is well known; see West
(2001).

Lemma 1 A graph G = (V ,E) is Eulerian if and only if it
is connected and indeg(v) = outdeg(v), for all v ∈ V .

We call a down arc (u, v) minimal if u and v are direct
neighbors in a linear ordering of V by non-decreasing labels.
Furthermore, we denote an up arc (u, v) as maximal if u

has the minimum label and v has the maximum label in V .
Consequently, there is only one distinct maximal arc.

Lemma 2 Given a Eulerian extension E′ for an instance of
G -1DEE with G = (V ,E), there is a Eulerian extension E′′
satisfying the following properties: E′′ contains only mini-
mal down arcs and maximal up arcs, E′ and E′′ have the
same cost, and for each Eulerian cycle in (V ,E ∪ E′) there
is one in (V ,E ∪ E′′) where the arcs from E appear in the
same order.

Proof Given an E′, we replace every non-maximal up
arc (u, v) by the arcs (u,u′), (u′, v′), (v′, v). Here (u′, v′)
is the maximal up arc, and (u,u′) and (v′, v) are down arcs.
If u = u′ or v = v′, then the arcs (u,u′) and (v′, v) are not
required, respectively. Obviously, this procedure preserves
the total number of up arcs, and keeps the balance of the
vertex degrees unchanged.

Now that all up arcs are maximal, we replace non-
minimal down arcs by minimal ones: Let (u, v) be a non-
minimal arc in the extension E′, i.e., there is a vertex w

with u < w < v or u > w > v. We replace (u, v) by (u,w)

and (w,v) to obtain E′′. This preserves the balance of inde-
gree and outdegree for each vertex, and still uses only down
arcs. Repeatedly performing this kind of operation for each
non-minimal arc we obtain a Eulerian extension that con-
tains only minimal arcs without increasing the cost.

Analogously, we can replace each arc of a Eulerian cycle
in E ∪ E′ by the corresponding path of minimal down arcs
and maximal up arcs in E ∪ E′′. This preserves the order of
arcs from E in the cycle. �

Theorem 1 F2 |nwt |G can be reduced to G -1DEE in poly-
nomial time.

Proof We construct an instance I ′ = (V ,E) of G -1DEE
from an F2 |nwt |G instance I by defining V =⋃n

i=1{p1i , p2i}, keeping only one vertex for each distinct
processing time. We add a job arc (p1i , p2i) to E for each
job Ji , i = 1, . . . , n. Furthermore, we add one maximal up
arc to E, serving as a dummy job between the first and last

job in the tour. In the following we show that an optimal ex-
tension E′ to I ′ contains k up arcs if and only if an optimal
solution to I causes k interruptions.

Consider a schedule for I . For simplicity, we assume
that jobs are scheduled in increasing order of their in-
dices. We add an extension arc (p2i , p1i+1) to E′ for i =
1, . . . , n − 1. This way we obtain a number of up arcs
equal to the number of interruptions caused by the sched-
ule. Let (u, v) be the maximal dummy up arc of the
instance I ′. Adding the down arcs (p2n,u), (v,p11) to
E′, we obtain an extension admitting the Eulerian cycle
p11,p12,p21,p22, . . . , p2n,u, v,p11.

Consider an optimal solution E′ to I ′. We employ
Lemma 2 assuming that all down arcs are minimal and all up
arcs are maximal. We convert the set E′ into a solution to I

by scheduling the jobs in the order in which the correspond-
ing job arcs appear in some Eulerian cycle in (V ,E ∪ E′),
breaking the cycle at the dummy arc in E.

Whenever an interruption appears between two consecu-
tive jobs, there is at least one up arc from E′ between the cor-
responding job arcs in the cycle, i.e., the number of interrup-
tions is at most k. We also see that between the traversal of
any two maximal up arcs (including the dummy arc from E)
there is at least one job arc, because otherwise the Eulerian
tour would traverse a cycle of only arcs from E′ and that
cycle could be removed from the extension. For any up arc
from E′, consider the job arcs (p1i , p2i) and (p1j ,p2j) tra-
versed before and after it in the Eulerian tour. It must hold
that p2i < p1j , because otherwise the assumption of only
minimal down arcs in E′ would again imply the existence
of a pure extension arc cycle in the tour. This argumentation
shows that there are at least k interruptions. �

Let indeg(V ′) denote the indegree of a subset V ′ ⊆ V ,
i.e., the number of arcs (u, v) ∈ E with u /∈ V ′ and v ∈ V ′.
Let the outdegree outdeg(V ′) be defined analogously. We
state a necessary condition based on indegree and outdegree
of vertex subsets.

Lemma 3 If a graph G = (V ,E) is Eulerian, then
indeg(V ′) = outdeg(V ′) for any subset of vertices V ′ ⊆ V .

Proof We prove the statement by showing a more general
result.

indeg(V ′) − outdeg(V ′)

=
(

∑

v∈V ′
indeg(v) − |{(u, v) | u,v ∈ V ′}|

)

−
(

∑

v∈V ′
outdeg(v) − |{(v,u) | u,v ∈ V ′}|

)

=
∑

v∈V ′
indeg(v) −

∑

v∈V ′
outdeg(v)

�

Author's personal copy

300 J Sched (2012) 15:295–309

Algorithm 1 Algorithm for 1DEE
1: Sort all vertices in V in non-decreasing order of their labels.
2: Let vi be the ith vertex in the ordering and let Vi := {u ∈ V |u ≤

vi}. Compute bmax := maxi=1,...,|V |−1{0, b(vi)}, where b(vi) :=
indeg(Vi) − outdeg(Vi).

3: Initialize E′ as the set containing bmax copies of the maximal up
arc (v1, v|V |).

4: For i := 1 to |V | − 1, add bmax − b(vi) minimal down arcs
(vi+1, vi) to E′.

5: If (V ,E ∪ E′) is not strongly connected, add one further maxi-
mal up arc (v1, v|V |) and minimal down arcs {(vi+1, vi) | 1 ≤ i ≤
|V | − 1} to E′.

The following simple and intuitive Algorithm 1 for solv-
ing G -1DEE follows generally the balance-and-connect ap-
proach of Ball and Magazine (1988). First, it determines the
minimum number of up arcs that are necessary and suffi-
cient for achieving balanced indegree and outdegree at each
vertex. They are inserted together with the suitable set of
down arcs. Then, the algorithm checks if the resulting graph
is strongly connected. If not, one additional up arc and the
respective sequence of down arcs suffice to achieve the de-
sired connectivity.

Lemma 4 Algorithm 1 chooses in Step 3 and 4 only arcs
that are necessary for any feasible Eulerian extension that
consist only of minimal down arcs and maximal up arcs. The
two steps effectuate that indeg(v) = outdeg(v) for each v ∈
V in (V ,E ∪ E′).

Proof Let vi be the vertex maximizing b(vi) in Step 2
of the algorithm. Lemma 3 states that there must be
max{0, b(vi)} = bmax arcs from Vi to V \ Vi in any feasi-
ble Eulerian extension. As these arcs are up arcs, they have
to be maximal due to our restriction. They are inserted by
the algorithm in Step 3.

After Step 3, we have indeg(Vi) − outdeg(Vi) = b(vi) −
bmax ≤ 0 in the graph (V ,E ∪ E′) for each i = 1, . . . ,

|V | − 1. So from Lemma 3 follows that for the graph to
be Eulerian there must be b(vi) − bmax additional arcs from
V \ Vi to Vi . Such arcs are down arcs, and due to our re-
striction to minimal ones, they must be copies of the arc
(vi+1, vi). Inserting them is exactly what Algorithm 1 does
in Step 4.

As soon as Step 4 has been executed, we have
indeg(Vi) = outdeg(Vi) for 1 ≤ i ≤ |V |, and in particular
indeg(v1) = outdeg(v1). Since indeg(Vi) − outdeg(Vi) =∑i

j=1 indeg(vj) − outdeg(vj) (see proof of Lemma 3), it
follows inductively that indeg(vi) = outdeg(vi) for all i. �

Theorem 2 Algorithm 1 solves G -1DEE optimally in time
O(|V | log |V | + |E|).

Proof By Lemma 2 it suffices to consider only maximal up
arcs and minimal down arcs as extension arcs. Let E1 be the

set of arcs chosen by the algorithm by the end of Step 4. By
Lemma 4, E1 is a subset of any feasible Eulerian Extension
for G, and we know that the indegree and outdegree of each
node is balanced in (V ,E ∪ E1). If this graph is strongly
connected, it is Eulerian (Lemma 1), and thus, Algorithm 1
is optimal.

Otherwise, at least one additional extension arc, i.e., ei-
ther a maximal up arc or a minimal down arc, must be
added. Suppose, we add a minimal down arc, say (vi+1, vi),
then we have indeg(Vi) − outdeg(Vi) = 1 in the resulting
graph. From Lemma 3 follows that we need an additional
up arc for re-establishing balanced indegree and outdegree
for each node. Thus, to establish connectivity in (V ,E ∪E1)

it is necessary to add an up arc. It is easy to see that with
one additional up arc the set of minimal down arcs inserted
in Step 5 of the algorithm is necessary and sufficient to
re-establish the balancedness of each node’s indegree and
outdegree. The resulting graph (V ,E ∪ E′) contains the
cycle v1, v|V |, v|V |−1, . . . , v1 and is therefore strongly con-
nected.

The initial sorting step of the algorithm requires time
O(|V | log |V |). Steps 2, 3, and 4 take O(|E|) time. The num-
ber of distinct up arcs added to E′ is linear in |V |, and there-
fore in Step 5 it can be tested in time O(|V | + |E|) whether
the graph constructed so far is strongly connected or not. �

We remark that the optimal solution to G -1DEE is always
unique, because the objective function value corresponds to
the number of up arcs, and—assuming that all up arcs are
maximal and all down arcs minimal—the set of down arcs
is uniquely determined by this number. As a consequence of
the reduction given in the proof of Theorem 1 and Lemma 2,
the extension E′ computed by Algorithm 1 implicitly repre-
sents all optimal schedules for the flowshop problem. Ac-
cording to the runtime analysis in the proof that representa-
tion can be computed in time O(n logn) because both |V |
and |E| are linear in the number of jobs n. However, there
may be O(n2) many extension arcs E′, so computing an Eu-
lerian tour in the graph obtained by Algorithm 1 may require
a running time quadratic in the input size of the scheduling
instance.

Corollary 1 Any problem instance of F2 |nwt |G can be
solved optimally in time O(n2).

The above algorithm can be applied also to the two-stage
flowshop problem to minimize the number of interruptions
with more than one machine on the second stage.

Theorem 3 Any problem instance I of FF2 |nwt |G with a
single processor on the first stage, m1 = 1, can be solved
optimally in time O(n2).

Author's personal copy

J Sched (2012) 15:295–309 301

Proof Given an instance I of problem FF2 |nwt |G with
m1 = 1, we consider an instance I ′ which equals I restricted
to single machines on both stages, i.e., m′

1 = m′
2 = 1. We

find an optimal solution S′ for I ′ with r ′ interruptions. This
can be done efficiently by Theorem 2 and gives a feasible so-
lution for I . Now, we construct an improved feasible sched-
ule S for instance I with r = max{0, r ′ − m2 + 1} inter-
ruptions: if there is an interruption in S′ then we move the
next block of interruption-free processing jobs to an unused
machine of the second stage; we repeat until all interrup-
tions are resolved or until all m2 machines are used in S.
This reduces the number of interruptions by m2 − 1 or less
if r ′ < m2 − 1.

The solution S is optimal for I . To see that, assume for
the sake of contradiction there is an optimal solution S∗ with
less interruptions r∗ < r . Then the corresponding sched-
ule can be transformed into a feasible one for instance I ′
with r ′′ < r ′ interruptions. Run the set of jobs using ma-
chine mi in S∗ consecutively for i = 1, . . . , r∗ − 1 using
only one processor at the second stage. This gives a feasible
solution S′′ for I ′ with at most m2 − 1 interruptions more,
i.e., r ′′ ≤ r∗ + (m2 − 1) < r + m2 − 1. This contradicts the
optimality of schedule S′ for I ′ with r ′ ≥ r + m2 − 1 inter-
ruptions. �

4 Complexity of minimizing the number of
interruptions

In contrast to the polynomial time solvable problems with
two stages in Sect. 3, the problem becomes strongly NP-
hard in any other case.

Theorem 4 The problem FFs |nwt |G is strongly NP-
hard for any constant number of stages s ≥ 3 and arbi-
trary constant numbers of machines. The same is true for
FF2 |nwt |G with m1 > 1.

The proof follows by combining NP-hardness results for
four particular problem classes (machine configurations).
The problem F3 |nwt |G , which plays a key role, is con-
sidered in Sect. 4.1; to show hardness, we utilize a two-
dimensional generalization of the G -1DEE. The remaining
problem classes are considered in Sect. 4.2.

In the proofs, we actually give reductions to a deci-
sion variant of the problem under consideration, i.e., we
ask if an interruption-free solution exists. We denote the
decision problem by E0(F3 |nwt |G). Obviously, the NP-
completeness of the decision problem implies NP-hardness
of the optimization variant. Moreover, it rules out the ex-
istence of an approximation algorithm, unless P = NP. We
remark here that our proofs can easily be extended to show
that the optimization problem remains strongly NP-hard un-
der the assumption that every solution has at least one inter-
ruption.

4.1 Hardness for scheduling on three stages

We show that the problem F3 |nwt |G is strongly NP-hard.
To show this result, we consider a natural two-dimensional
interpretation of G -1DEE in which each vertex has two
labels which can be seen as points in R

2. We define the
G -related two-dimensional Eulerian Extension Problem
(G -2DEE) as follows.

Definition 2 (G -2DEE) Given a directed multigraph G =
(V ,E) with vertices V ⊂ R

+
0 × R

+
0 , determine whether

there exists a Eulerian extension E′ for G using only down
arcs {(u, v) | u,v ∈ V, u ≥ v component-wise}.

We show that the problem G -2DEE is strongly NP-
complete by reduction from the Three-Dimensional Match-
ing Problem (3DM).

Definition 3 (Three-Dimensional Matching, 3DM) Given a
set U ⊆ M1 ×M2 ×M3 of triples, where M1, M2 and M3 are
pairwise disjoint and have the same number k of elements,
decide whether U contains a subset U ′ ⊆ U with |U ′| = k

and no two elements of U ′ agree in any coordinate.

Here we assume w.l.o.g. that any element of M1 ∪ M2 ∪
M3 appears in at least one triple of U . The problem 3DM
is well known to be strongly NP-complete (Karp 1972). Our
reduction to G -2DEE borrows ideas from the reduction of
3DM to a weighted tour problem given by Röck (1984)
in order to show the NP-hardness of the flowshop problem
F3 |nwt |Cmax.

Theorem 5 The problem G -2DEE is strongly NP-complete.

Proof Denote the arcs in a solution E′ to G -2DEE as exten-
sion arcs. Note that in contrast to the one-dimensional case,
extension arcs in this setting only contain down arcs. We
say that two points u = (xu, yu), v = (xv, yv) ∈ R

+
0 × R

+
0

are independent, if the relation of their coordinates is such
that neither (u, v) nor (v,u) could be an extension arc, i.e.,
if either xu < xv and yu > yv , or xu > xv and yu < yv .

Consider two rectangles A = [xmin, xmax] × [ymin, ymax],
A′ = [x′

min, x
′
max] × [y′

min, y
′
max] in R

+
0 × R

+
0 . We say that A

and A′ are independent if any two points u ∈ A, v ∈ A′ are
independent. Formally, A and A′ are independent if and only
if either xmax < x′

min and ymin > y′
max, or xmin > x′

max and
ymax < y′

min.
A point v = (vx, vy) is reachable from another point

u = (ux,uy) if (u, v) is a down arc, and v is one-way reach-
able from u if it is reachable from u, but u is not reach-
able from v. Formally, v is reachable from u if ux ≥ vx and
uy ≥ vy . One-way reachability is obtained by additionally
demanding that u �= v.

Author's personal copy

302 J Sched (2012) 15:295–309

Fig. 2 2DEE representation of a 3DM instance

Given an instance U ⊆ M1 × M2 × M3 of 3DM with
|M1| = |M2| = |M3| = k, we construct an equivalent G -
2DEE instance (V ,E) as follows: Let {A1, . . . ,A|U |} be
a collection of pairwise independent rectangles. For i =
1, . . . , |U |, define three points ai1, ai2, ai3 ∈ Ai such that ai2

is one-way reachable from ai1, and ai3 is one-way reach-
able from ai2. We define the set of vertices as V =⋃

i=1,...,|U |{ai1, ai2, ai3} ∪ {vmin, vmax}, where vmin is such
that it is one-way reachable from any other vertex in V ,
and vmax is such that any other vertex in V is one-way
reachable from it. Formally, the vertex set can be imple-
mented as vmin = (0,0), vmax = (|U | + 1, |U | + 1), and
aij = (4i − j,4(|U | + 1 − i) − j) for 1 ≤ i ≤ |U | and
j ∈ {1,2,3}.

For constructing the arc set E, let U = {U1, . . . ,U|U |} be
an arbitrary enumeration of the triples in U . For any ele-
ment b ∈ Mj , j = 1,2,3, we add arcs to (V ,E) that consti-
tute a directed cycle Cb . In an arbitrary order, that cycle in-
cludes exactly all vertices aij where b is the j th component
of Ui . Consequently, E contains 3k pairwise vertex-disjoint
cycles. The construction of E is completed by adding k arcs
from vmin to vmax; see Fig. 2.

In the following, we assume that E′ is a solution to the G -
2DEE problem instance (V ,E). A Eulerian tour (V ,E ∪E′)
traverses (vmin, vmax) exactly k times. The following two
points state crucial properties of such a tour.

1. Let P = vmax, . . . , vmin be a path in (V ,E ∪ E′) that
is part of a Eulerian tour and does not include the arc
(vmin, vmax). Then all arcs in P ∩ E are contained in not
more than three different cycles Cb1 , Cb2 and Cb3 .

2. Any Eulerian tour in (V ,E ∪ E′) includes each cycle Cb

as a contiguous sub-tour.

For showing the first property, consider some arc in P

that belongs to a cycle Cb with b ∈ Mj . There are only three
possibilities to continue P after the sink aij of the arc has
been reached. If P continues using another arc from E, then,
due to the vertex-disjointness of the cycles, that arc also be-
longs to Cb . If P continues with an arc from E′, then, due
to the independence and reachability properties of V , that
next arc will be either (aij , vmin) or (aij , aij ′) with j ′ > j .
In the former case, P ends. In the latter case, P can enter a
new cycle Cb′ with b′ ∈ Mj ′ , but j ′ is strictly larger than j .
In other words, each time P enters a new cycle Cb , b ∈ Mj ,
the index j strictly increases. As j ≤ 3, the first property
follows.

Since there are k arcs (vmin, vmax) and 3k cycles Cb , it
follows from the first property that each cycle can be entered
at most once, because otherwise some cycles would remain
not entered at all. Thus, in a Eulerian tour each cycle must
be completely traversed as soon at it is entered, yielding the
second property.

Thus, a Eulerian tour leaves each cycle Cb at the same
vertex it entered it. It follows that between any two consecu-
tive traversals of (vmin, vmax), three cycles Cb1 ,Cb2 ,Cb3 are
traversed, each time starting and ending inside the same rect-
angle Ai . So the Eulerian extension of (V ,E) has to have the
form E′ = ⋃

h=1,...,k{(vmax, aih1), (aih1, aih2), (aih2, aih3),

(aih3, vmin)}, where i1, . . . , ik are such that each cycle Cb

can be traversed. This is the case if and only if no two aihj

and aih′ j belong to the same cycle, which is equivalent to
Ui1, . . . ,Uik constituting a matching. �

Now we are ready to show NP-completeness for
F3 |nwt |G respective its decision variant E0(F3 |nwt |G).

Theorem 6 It is NP-complete to decide whether there is an
interruption-free schedule for an instance of F3 |nwt |G .

Proof We show the NP-completeness of the decision prob-
lem E0(F3 |nwt |G) by reduction from G -2DEE. Our proof
has the following structure: We first give an interpretation
of our scheduling problem as an extension problem. Then
we fix a set of properties that are only satisfied by G -
2DEE instances representing a scheduling problem instance
in that way. Finally, we prove that any G -2DEE instance can
be transformed into an equivalent instance satisfying these
properties.

Consider a set of jobs J1, . . . , Jn. A schedule without in-
terruptions corresponds to a permutation Jσ(1), . . . , Jσ(n) of
the jobs, where for 1 ≤ i < n job Jσ(i+1) can be scheduled
after Jσ(i) without causing an idle time on the third ma-
chine. This is the case if and only if p3σ(i) ≥ p2σ(i+1) and
p3σ(i) + p2σ(i) ≥ p2σ(i+1) + p1σ(i+1).

Author's personal copy

J Sched (2012) 15:295–309 303

In terms of our extension problem, this means that the
point (p2σ(i+1), p2σ(i+1) + p1σ(i+1)) is reachable from the
point (p3σ(i), p3σ(i) + p2σ(i)). We associate every job Jj

with an arc from (p2j ,p2j + p1j) to (p3j ,p3j + p2j). In
the consequence, there is an interruption-free schedule of
J1, . . . , Jn if and only if the induced graph (V0,E0) admits
an extension E′ such that there is a path traversing each arc
exactly once. This is the case if and only if there is a Eulerian
extension of the graph (V ,E) = (V0 ∪ {vmin, vmax},E0 ∪
{(vmin, vmax)}), where vmin (vmax) is such that it is smaller
(greater) than all other elements of V in both coordinates.

We call a graph G∗ = (V ∗,E∗) with V ∗ ⊂ R
+
0 × R

+
0 le-

gal, if it represents a scheduling instance in the way we have
just described. Respectively, an arc is called legal if it rep-
resents some job from a scheduling instance. It is not hard
to observe that for an arc to be legal it suffices that it has
the form ((x, y), (x′, x + x′)) with x ≤ y. In other words,
the source and sink vertex of a legal arc are above the bi-
sectrix, and for a given source there is only one degree of
freedom for the choice of the sink. For a graph to be legal it
suffices that it is induced by Ê ∪ {(vmin, vmax)}, where Ê is
a set of legal arcs, and vmin and vmax are like defined in the
preceding paragraph.

We complete our reduction by describing in Lemma 5
how to legalize an arbitrary instance G = (V ,E) of G -
2DEE, that is, to transform it into a legal instance G∗ =
(V ∗,E∗), where G admits a Eulerian extension if and only
if G∗ does. �

Lemma 5 Each instance of G -2DEE can be legalized in
polynomial time.

Proof First, we ensure that every vertex is above the bisec-
trix and no vertex has coordinates (0,0). This is achieved
by vertically shifting the whole graph by xmax = max{x |
(x, y) ∈ V } + 1. Technically, we obtain the graph G1 =
(V1,E1) by adding xmax to the second coordinate of every
vertex. As this does not change the reachability relation be-
tween any pair of vertices, G and G1 are equivalent in the
sense of G -2DEE.

In the second transformation step, we eliminate all il-
legal arcs. Let arc (u, v) = ((ux,uy), (vx, vy)) ∈ E1 be
illegal. Let ymax = max{y | (x, y) ∈ V1} + 1. We en-
hance V1 by the vertices w1 = (ymax − ux, ymax), w2 =
(0, ymax), w3 = (ymax, ymax) and w4 = (vy − vx, ymax).
Then, we replace (u, v) with the arcs (u,w1), (w2,w3)

and (w4, v); see Fig. 3.
Straightforward observation shows that all new arcs are

legal and any possible tour in a Eulerian extension must
traverse the path u,w1,w2,w3,w4, v. Thus, the modified
graph admits a Eulerian extension if and only if G1 does.

We obtain the graph G2 = (V2,E2) by iteratively elim-
inating every illegal arc from G1. Note that each such

Fig. 3 The arc (u, v) is replaced with the legal arcs (u,w1), (w2,w3),
and (w4, v)

elimination causes ymax to increase by one. Still G2 does
not necessarily represent a flowshop scheduling instance,
as there has to be an arc (vmin, vmax). We take care of
this requirement in the last step of transformation. Let
u = (ux,uy) ∈ V2 be an arbitrary vertex. We insert vmin =
(0,0) and vmax = (ymax, ymax) into V2, where ymax =
max{y | (x, y) ∈ V2} + 1. Furthermore, we insert w1 and w2

defined like in the transformation from G1 to G2, and w4 =
(uy − ux, ymax). Note that w3 has already been inserted
as vmax. Then, the arcs (u,w1), (w2, vmin), (vmin, vmax)

and (w4, u) are added to E2.
As the new vertices are above the bisectrix, the new

arcs are legal, and the resulting graph G∗ = (V ∗,E∗)
contains an arc from vmin to vmax, it represents an in-
stance of F3 |nwt |G . Any Eulerian tour traverses the cy-
cle u,w1,w2, vmin, vmax,w4, u as a closed sub-tour. Hence,
G2 and G∗ are equivalent G -2DEE instances. �

4.2 More hardness results

First we consider flexible flowshops with two stages. We
show by reduction from 3-PARTITION that minimizing the
number of interruptions is strongly NP-hard if the first stage
contains two machines and the second stage only one.

Definition 4 (3-PARTITION) Given a set A of 3m elements
from N

+ with B/4 < a < B/2 for all a ∈ A, where B :=
1
m

∑
a∈A a, decide whether A can be partitioned into m dis-

joint sets A1, . . . ,Am with
∑

a∈Ai
a = B for i = 1, . . . ,m.

It is well known that 3-PARTITION is NP-complete in the
strong sense; see Garey and Johnson (1979).

Author's personal copy

304 J Sched (2012) 15:295–309

Theorem 7 The problem E0(FF2 |nwt |G) with m1 = 2
and m2 = 1 is strongly NP-complete.

Proof Given a 3m-element instance A of 3-PARTITION, we
construct an instance I of E0(FF2 |nwt |G) with m1 = 2 and
m2 = 1. For any a ∈ A we choose a job in I with processing
times 1 and a on the first and second stage, respectively.
To partition these jobs, we add m + 1 auxiliary jobs having
processing times B on the first stage and 0 on the second
stage.

We show that in a schedule without interruptions, there is
no point in time at which two auxiliary jobs are processed in
parallel on the first stage. First notice that two auxiliary jobs
running fully in parallel must cause an interruption (i) with
any job scheduled before them, because no job in I has pro-
cessing time B on the second stage, and (ii) with any job
scheduled after them, because no job in I has processing
time 0 on the first stage. Now, assume that there are aux-
iliary jobs J1 and J2 with start times S1 < S2 < S1 + B ,
which, as a consequence, fully block the first stage during
[S2, S1 + B). Since all jobs in I have positive processing
times on the first stage, no job can start at S1 + B on the
second stage, and thus, an idle time after J1 is unavoidable.

Therefore, we may assume that in any schedule without
interruptions all auxiliary jobs are processed on the same
machine in the first stage. This induces m gaps of length
at least B between the auxiliary jobs on the second stage.
These gaps can be filled with the remaining jobs if and only
if A is a yes-instance. �

Now, we generalize this NP-completeness result and
combine it with the single-machine case in Theorem 6. The
following two lemmata show that E0(FFs |nwt |G) with any
constant number of stages s ≥ 2 and constant numbers of
machines, except s = 2 and m1 = 1, is also strongly NP-
complete.

Lemma 6 Consider E0(FFs |nwt |G) with a constant num-
ber of stages s ≥ 2. Any variant of this problem with con-
stant numbers of machines m1, . . . ,ms where ms = 1 can
be reduced to the problem variant with constant numbers of
machines m′

i , i = 1, . . . , s, satisfying m′
k = mk + 1 for some

k < s and m′
i = mi for i �= k.

Proof We consider E0(FFs |nwt |G) with a constant num-
ber of stages s ≥ 2 and constant numbers of machines.
Given an instance I of a problem variant with numbers of
machines mi , i = 1, . . . , s, where ms = 1, we build an in-
stance I ′ of a problem variant with numbers of machines m′

i

as specified in the lemma. In addition to the original jobs J

of I , we choose auxiliary jobs for I ′ which force the jobs
from J to use only mk machines on stage Lk . For block-
ing this stage, we add m′

k + 1 jobs with processing time

Fig. 4 Arrangement of auxiliary jobs in a schedule without interrup-
tions (Lemma 6). Original jobs have to be processed in dotted slots

p = maxj∈J

∑s−1
i=1 pij + ∑

j∈J psj on stage Lk , and 0 else-
where. We denote these auxiliary jobs by A. For an arbitrary
auxiliary job Jmod ∈ A, we modify the processing time on
the last stage to q = p − ∑

j∈J psj .
Given a schedule without interruptions for I ′, we con-

sider the sub-schedule of auxiliary jobs. Observe that the
idle times on the last stage in this sub-schedule sum up to
at most

∑
j∈J psj , since otherwise they could not be filled

with the jobs J in the total schedule. We examine the ar-
rangement of jobs from A. By its cardinality, there is a ma-
chine in stage Lk that processes a subset Ã ⊆ A of at least
two jobs. Due to the largest possible length of idle times on
the only machine of the last stage, Ã contains exactly two
jobs, the first of them being w.l.o.g. Jmod. Hence, the jobs
from Ã generate an idle time of length

∑
j∈J psj on the last

stage. Since no further idle times are allowed, the remaining
jobs from A must be scheduled such that they exactly meet
the previous jobs on the last stage. Thus, we can assume that
the auxiliary jobs are arranged as in Fig. 4.

By definition of p and q there exists a schedule without
interruptions for the instance I ′ if and only there exists one
for the instance I . �

Lemma 7 Consider E0(FFs |nwt |G) with a constant num-
ber of stages s ≥ 2. Then any variant of this problem with
constant numbers of machines m1, . . . ,ms can be reduced
to any other problem variant with constant numbers of ma-
chines m′

i , i = 1, . . . , s, satisfying m′
s > ms and m′

i = mi for
i = 1, . . . , s − 1.

Proof We reduce the problem E0(FFs |nwt |G) with con-
stant numbers of machines m1, . . . ,ms to another variant of
this problem with machine numbers m′

i , i = 1, . . . , s, satis-
fying m′

s > ms and m′
i = mi elsewhere. Given an instance I

of the former problem with set of jobs J , we build an in-
stance I ′ of the latter problem by adding auxiliary jobs to
the instance I : We choose ms jobs with processing time
q = maxj∈J

∑s
i=1 pij on the last stage, and 0 on all other

stages. Furthermore, we add m′
1 m′

s jobs with processing
time p > (ms + 1)q + ∑

j∈J psj on stage L1, and 0 else-

where. We denote these jobs with J
q
aux and J

p
aux, respec-

tively.

Author's personal copy

J Sched (2012) 15:295–309 305

Fig. 5 Schedule without
interruptions for I ′. (Lemma 7)

If there exists an interruption-free schedule S for I , then
the schedule in Fig. 5 shows how to arrange the jobs from I ′
without idle times on the last stages: The jobs from J

p
aux are

scheduled in m′
s blocks of m′

1 jobs which are processed in
parallel on the first stage and on the same machine in the last
stage, choosing separate machines on the last stage for each
block. With sufficiently long idle times between the blocks,
we can process on ms of the last stage machines additionally
one job from J

q
aux and then a sub-schedule that corresponds

to a last stage machine in S.
On the other hand, given a schedule for I ′ without inter-

ruptions, we can construct a schedule without interruptions
for I . In the following we call jobs with processing time 0
on the stages L1, . . . ,Ls−1 zero-jobs. We claim that in any
interruption-free schedule for I ′ every machine on the last
stage processes first one or more jobs from J

p
aux, second

a zero-job and third an interruption-free sequence of jobs
from J ∪ J

q
aux (which may also include jobs from J

p
aux).

We consider a schedule for I ′ that does not contain an in-
terruption. Then, the last stage idle times in the sub-schedule
induced by the jobs J

p
aux do not equal or exceed p, by def-

inition of p. Thus, there is no pair of jobs from J
p
aux that is

processed on the same machine on the first and last stage.
In particular, every first stage machine processes exactly m′

s

jobs from J
p
aux. Hence, given a machine on the first and last

stage, there is a unique job from J
p
aux which is processed on

both machines. As a consequence, the m′
1 jobs from J

p
aux,

which are processed on a particular machine M on the last
stage, use every machine in the first stage for processing ex-
actly one job.

Let c be the first completion time of these jobs, and
let J ∈ J

p
aux be a job completing at that time. Since idle

times on the last stage must be compensable with the jobs
from I ′, none of the jobs from J

p
aux on M completes after

d = c + msq + ∑
j∈J psj . Thus, these jobs block the first

stage during [d − p, c). This yields two characteristics for
schedules without interruptions: First, J can be followed on
machine M only by zero-jobs. And second, by

∣
∣[d − p, c)

∣
∣ = p − msq +

∑

j∈J

psj > q = max
j∈J

s∑

i=1

pij ,

no job can be processed before J on M . Since the jobs
from J

p
aux have processing time 0 on the last stage, all fur-

ther jobs from J ∪ J
q
aux on M follow the zero-job without

idle time. This completes the proof of the claim.
Given a schedule for I ′ with the properties claimed

above, we show how to construct an interruption-free sched-
ule for the instance I . Consider all machines on the last stage
that process a job from J ∪ J

q
aux. If there is a machine that

processes more than one job from J
q
aux, then we move the

sequence of jobs, starting with the second job from J
q
aux (ig-

noring the jobs from J
p
aux), to a machine on the last stage,

which processes no job from J
q
aux. Since the jobs from J

q
aux

are zero-jobs, this does not create an interruption on the new
machine. If there occur conflicts with other jobs, then we
delay sub-schedules corresponding to some machines on the
last stage. In case that a machine processes only jobs from J ,
but no job from J

q
aux, then by our claim, the first job is a zero-

job. Hence, we can move the sequence of jobs from J to
another machine, which already processes a job from J

q
aux.

Thus, we may assume that there are at most ms machines on
the last stage that process jobs from J and each of these ma-
chines processes one job from J

q
aux. If the job from J

q
aux is

not the first one in the sequence of jobs from J ∪ J
q
aux, then

we can move the subsequence starting with it to the begin-
ning. Since the first job in the sequence and the job from J

q
aux

are zero-jobs, this creates no interruption. Finally, we ob-
tain a schedule for I ′ that uses only ms machines on the last
stage, and in which the jobs of J are processed without in-
terruption. This yields an interruption-free schedule for the
instance I . �

Theorem 4 is proven by combining the results of this sub-
section with Theorem 6.

5 Alternative scheduling models

The scheduling model used in the previous sections bears
two problems: (i) it is inapproximable for almost every ar-
rangement of machines, as we have shown in Sect. 4, and
(ii) it may lead to schedules with unacceptable makespan, as
we demonstrate in Sect. 5.2. Therefore, it is natural to con-
sider other scheduling models that aim for a small number
of interruptions.

Author's personal copy

306 J Sched (2012) 15:295–309

Fig. 6 Instance of Fs |nwt |G
with s ≥ 2 machines. For all
i = 1, . . . , s and some k ∈ N,
choose k copies of a job with
processing time p + (i − 1)ε on
machine i and ε elsewhere for
p
 ε > 0. The makespans of
the schedules in 6(a) and 6(b)
differ asymptotically about a
factor of s

5.1 Maximizing the number of non-interruptions

We consider the maximization variant corresponding to the
problem of minimizing G . That is, instead of counting
the number of interruptions, we count how often jobs run
on the last stage without incurring idle time after them,
which we call a non-interruption. Since a schedule maxi-
mizes the number of non-interruptions if and only if it mini-
mizes the number of interruptions, the optimal algorithm for
F2 |nwt |G from Sect. 3 and the NP-hardness results from
Sect. 4 transfer immediately. However, the situation is com-
pletely different concerning approximability. In fact, we de-
rive a constant factor approximation for the single-machine
maximization problem for three or more stages, whereas
the minimization variants of those problems are inapprox-
imable.

Theorem 8 The no-wait flowshop problem of maximizing
the number of non-interruptions can be approximated with
factor 3/4 in the single-machine case.

Proof We simply reduce our problem to a maximum asym-
metric Traveling Salesperson Problem (maxATSP): Given
a directed complete graph, find a TSP tour of maximum
weight (Bläser 2004). We interpret every job as a vertex
in an instance of maxATSP and choose weight 1 for an
arc between two nodes if the corresponding jobs can be
processed without interruption, and 0 otherwise. Addition-
ally, we choose an auxiliary vertex whose adjacent arcs all
have weight 0. Clearly, a tour in this graph, interrupted
at the auxiliary vertex, yields a schedule with as many
non-interruptions as the cost of the tour. Thus, the 3/4-
approximation algorithm for maxATSP with cost 0 and 1
given by Bläser (2004) solves the problem of maximizing
the number of non-interruptions with the same performance
guarantee. �

5.2 A model combining G and Cmax

Even though practitioners ask for minimizing the number of
interruptions, this objective does not allow any control over
the makespan Cmax of a schedule, and hence, may lead to
solutions that are unreasonable in practice. Figure 6 demon-
strates such an example in which two schedules that are op-
timal with respect to G have makespans that differ by a fac-
tor in the order of the number of stages. This is in practice
an unrealistic scenario, which justifies a new model, which
combines both the minimization of G and Cmax.

We propose a model in which we aim for minimizing
the makespan under the restriction that a certain minimum
idle time length λ ≥ 0 is satisfied. From a practical point of
view, λ can be seen as unavoidable cleaning time in case of a
strand interruption. We denote this job characteristic by λ in
the second component of the three-field scheduling notation.

Depending on the choice of λ, the optimization focus is
set more on minimizing the pure makespan or the number
of interruptions. If λ = 0, we have the traditional makespan
minimization problem. Thus, it follows from the strong NP-
hardness of F3 |nwt |Cmax (Röck 1984) that the generalized
problem FFs |nwt, λ |Cmax is also NP-hard in the strong
sense for any constant number of stages s ≥ 3 and all con-
stant numbers of machines. We can simply reduce the deci-
sion problem corresponding to F3 |nwt |Cmax with respect
to a makespan T to any problem with more machines or
stages by blocking the additional machines with auxiliary
jobs with processing time T on one stage and zero else-
where. Analogously, the strong NP-hardness of the two-
stage problem FF2 |nwt, λ |Cmax with one of the stages con-
taining more than one machine follows from Sriskandarajah
and Ladet (1986), where it is shown that FF2 |nwt |Cmax

with one single-machine stage and one two-machine stage
is strongly NP-hard. Thus, only the complexity of the sin-
gle processor two-stage case of our generalized problem,
F2 |nwt, λ |Cmax, remains open.

Author's personal copy

J Sched (2012) 15:295–309 307

In contrast to this analogy to the makespan minimization
problem, a large minimal interruption length λ puts more
emphasis on the minimization of the number of interrup-
tions. For an extreme case we make the following observa-
tion.

Proposition 1 For λ > maxj∈J

∑s−1
i=1 pij , every optimal so-

lution of an instance I of FFs |nwt, λ |Cmax with ms = 1
also minimizes G .

Proof Given a makespan optimal schedule S∗ for I , we as-
sume that there exists a schedule S with less interruptions
than S∗. By the choice of λ, idle times on the last stage have
either length 0 or λ, and thus,

Cmax(S) ≤ max
j∈J

s−1∑

i=1

pij +
∑

j∈J

psj + λG (S)

<
∑

j∈J

psj + λ
(
G (S) + 1

)

≤
∑

j∈J

psj + λG (S∗) ≤ Cmax(S
∗),

which contradicts the optimality of S∗. �

Note that this is not true for ms > 1, since an unavoidable
interruption on one machine allows the other machines to
have an interruption at the same time without increasing the
makespan.

In the following, we investigate approximation algo-
rithms for minimizing Cmax in the model with minimum
interruption length. By the above considerations, it is a nat-
ural approach to use algorithms for minimizing the classical
makespan or the number of interruptions to construct ap-
proximation algorithms for our generalized problem. In the
single-machine case every schedule not satisfying the min-
imal interruption length of λ can be made feasible by just
enlarging the idle times to the appropriate length. Hence,
we can simply transform schedules from the model with-
out minimal interruption length to feasible schedules in our
model. In case of parallel machines this is not necessarily
possible, since jobs may overtake each other on stages with
more than one machine.

First, we consider an approximation algorithm which is
based on the exact algorithm for F2 |nwt |G from Sect. 3.

Theorem 9 The problem F2 |nwt, λ |Cmax can be approxi-
mated with factor 2 in polynomial time.

Proof We interpret a given instance I of F2 |nwt, λ |Cmax,
as an instance I ′ of F2 |nwt |G . We solve this problem op-
timally in polynomial time (Sect. 3) and obtain an optimal
schedule S′ for I ′. We show that the schedule S, which is

obtained by enlarging the interruption lengths of S′ to at
least λ, satisfies the claimed approximation factor.

Suppose that the jobs are indexed in the order of the se-
quence S. To express the makespan of S, we use a binary
variable δj indicating if there is an interruption after job Jj .
Then

Cmax(S) = p11 +
n∑

j=1

p2j +
n−1∑

j=1

δj max{λ,p1,j+1 − p2j }

≤ p11 +
n∑

j=1

p2j + λG (S′) +
n−1∑

j=1

δj (p1,j+1 − p2j)

≤
n∑

j=1

p2j + λG (S′) +
n∑

j=1

p1j .

The lower bounds
∑n

j=1 p2j +λG (S′) and
∑n

j=1 p1j on the
optimal makespan conclude the proof. �

A simple example with two jobs and processing times
p11 = p22 = ε, p12 = p + ε, and p21 = p for some p

ε > 0 shows that the approximation factor is in fact tight.

We continue with investigating solution methods that are
based on algorithms for the classical makespan minimiza-
tion problem. When λ is part of the input or a large con-
stant, this approach generally fails. Already simple exam-
ples show that schedules with optimal makespan may have
the maximum number of interruptions whereas there exist
idle time free schedules; see Fig. 1 in Sect. 2. On the other
hand, when λ is bounded by some constant multiple of the
average processing time per stage, then approximation algo-
rithms for the classical makespan problem lead to reason-
able algorithms for the problem with minimal interruption
length.

Proposition 2 Any k-approximation algorithm for the prob-
lem Fs |nwt |Cmax yields a (k+ r)-approximation algorithm
for Fs |nwt, λ |Cmax, where λ ≤ r (

∑
i,j pij)/(s n).

Proof We construct a schedule S for an instance of the prob-
lem Fs |nwt, λ |Cmax as follows: first, we compute a sched-
ule S′ applying a k-approximation algorithm for the clas-
sical makespan problem, and then we enlarge the idle time
slots on the last stage in S′ to their required length. Then

Cmax(S) ≤ Cmax(S
′) + (n − 1)λ ≤ Cmax(S

′) + r
∑

i,j

pij /s.

The optimal makespan for the classical makespan version of
the problem and

∑
i,j pij /s are both lower bounds on the

optimal makespan with minimal interruption length. This
concludes the proof. �

Author's personal copy

308 J Sched (2012) 15:295–309

Using an optimal algorithm for F2 |nwt |Cmax (see
Gilmore and Gomory 1964), Proposition 2 yields a (1 + r)-
approximation for the generalized model. For the larger
problem class Fs |nwt |Cmax the polynomial time approx-
imation scheme by Sviridenko and Woeginger (2000),
leads to an (1 + r + ε)-approximation algorithms for
Fs |nwt, λ |Cmax.

Combining both algorithms in Theorem 9 and Proposi-
tion 2, that is, returning simply the better result, yields an
approximation algorithm for the problem F2 |nwt, λ |Cmax

with factor min{2, λsn/(
∑

i,j pij) + 1}.

6 Conclusions

We considered a new, practically relevant flowshop schedul-
ing problem and gave a full analysis of its complexity status.
We interpreted the flowshop problem as a Eulerian Exten-
sion Problem (or Rural Postman Problem) to obtain poly-
nomial time algorithms but also to derive NP-hardness re-
sults. This concept of interpreting sequencing problems as
Eulerian Extension Problems does not only lead to elegant
algorithms, it also allows an implicit representation of all
optimal solutions. We believe that this technique influences
also other algorithmic frameworks for related problems and
may lead also to approximate solutions.

Our algorithmic results for FF2 |nwt |G essentially re-
quire that no stage can be skipped by a job. Otherwise the
problem becomes NP-hard even in the single-machine case
with two stages, which can be shown by similar arguments
as in the makespan minimization version (Sahni and Cho
1979).

However, our results generalize to the case where the no-
wait constraint is replaced by (possibly negative) waiting
times between completing a job on one stage and starting
it on the next one. In the reduction from the variant with
two single-machine stages to G-1DEE, we now add job arcs
from Δstart to Δcompl, where Δstart is the (possibly negative)
difference between the starting times of a job on the two
stages, and Δcompl is the difference between the completion
times. Note that this construction generalizes all algorithmic
results in Sect. 3, and moreover, it can even handle the case
where the waiting times are individual for each job. How-
ever, it is still necessary to require that the job permutation
is equal on each stage, i.e., jobs are not allowed to overtake
each others. Otherwise the problem is NP-hard, since one
can simulate machine skipping of a job by adding a small
processing time on the skipped stage and making the delay
of the job so large that its processing time slot on the skipped
stage can never collide with any other job.

The view as a Eulerian Extension Problem raises in-
teresting potential for multi-criteria optimization. As a
first step toward multi-criteria optimization, consider both

objective functions, G and Cmax. Already simple exam-
ples (even on two stages) show that schedules with opti-
mal makespan may have the maximum number of inter-
ruptions whereas there exist idle time free schedules. For
the two-stage variants of these problems, our technique pro-
vides us an implicit representation of all optimal solutions
from which one could choose accordingly. Using insights
from the proof of Theorem 9, this implies that an algo-
rithm that solves the interruption problem optimally, yields
a schedule of makespan no greater than twice the minimum
makespan, giving a trivial (1,2)-approximation for the bi-
criteria objective (G ,Cmax). Moreover, it follows from the
NP-completeness of FF2 |nwt,m2 ≥ 2 |Cmax (Sriskandara-
jah and Ladet 1986) that approximating such problems with
a (c,1)-guarantee is NP-hard for any constant c ≥ 1.

References

Ball, M. O., & Magazine, M. J. (1988). Sequencing of insertions in
printed circuit board assembly. Operations Research, 36(2), 192–
201.

Bläser, M. (2004). A 3/4-approximation algorithm for maximum asym-
metric TSP with weights zero and one. In Lecture Notes in Com-
puter Science: Vol. 3122. Proceedings of the 7th international
workshop on approximation algorithms for combinatorial opti-
mization problems (APPROX) (pp. 61–71). Berlin: Springer.

Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc routing prob-
lems II. The rural postman problem. Operations Research, 43(3),
399–414.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability.
New York: Freeman.

Giaro, K. (2001). NP-hardness of compact scheduling in simplified
open shop and flowshop. European Journal of Operational Re-
search, 130, 90–98.

Giaro, K., & Kubale, M. (2004). Compact scheduling of zero-one time
operations in multi-stage systems. Discrete Applied Mathematics,
145, 95–103.

Gilmore, P. C., & Gomory, R. E. (1964). Sequencing a one state-
variable machine: a solvable case of the traveling salesman prob-
lem. Operations Research, 12, 655–679.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan,
A. H. G. (1979). Optimization and approximation in deterministic
sequencing and scheduling: a survey. Annals of Discrete Mathe-
matics, 5, 287–326.

Gutin, G., & Punnen, A. P. (2002). The traveling salesman problem
and its variations. Berlin: Springer.

Hall, N. G., & Sriskandarajah, C. (1996). A survey of machine schedul-
ing problems with blocking and no-wait in process. Operations
Research, 44(3), 510–525.

Harjunkoski, I., & Grossmann, I. (2001). A decomposition approach
for the scheduling of a steel plant production. Computers &
Chemical Engineering, 25, 1647–1660.

Kabadi, S. N. (2002). New polynomially solvable classes and a new
heuristic for the traveling salesman problem and its generaliza-
tion. Discrete Applied Mathematics, 119, 149–167.

Karp, R. M. (1972). Reducibility among combinatorial problems. In
R. Miller & J. Thatcher (Eds.), Complexity of computer computa-
tions (pp. 85–103). New York: Plenum Press.

Laporte, G., & Osman, I. H. (1995). Routing problems: a bibliography.
Annals of Operation Research, 61, 227–262.

Author's personal copy

J Sched (2012) 15:295–309 309

Lenstra, J. K., & Kan, A. H. G. R. (1976). On general routing problems.
Networks, 6(3), 273–280.

Orloff, C. (1974). A fundamental problem in vehicle routing. Net-
works, 4, 35–64.

Pacciarelli, D., & Pranzo, M. (2004). Production scheduling in a
steelmaking-continuous casting plant. Computers & Chemical
Engineering, 28(12), 2823–2835.

Piehler, J. (1960). Ein Beitrag zum Reihenfolgenproblem. Un-
ternehmensforschung, 4, 138–142.

Reddi, S. S., & Ramamoorthy, C. V. (1972). On the flow-shop sequenc-
ing problem with no wait in process. Operational Research Quar-
terly, 23(3), 323–331.

Röck, H. (1984). The three-machine no-wait flow shop is NP-complete.
Journal of the Association for Computing Machinery, 31(2), 336–
345.

Rote, G., & Woeginger, G. J. (1998). Time complexity and linear-time
approximation of the ancient two-machine flow shop. Journal of
Scheduling, 1(3), 149–155.

Sahni, S., & Cho, Y. (1979). Complexity of scheduling shops with
no-wait in process. Mathematics of Operations Research, 4, 448–
457.

Schwindt, C., & Trautmann, N. (2003). Scheduling the production of
rolling ingots: industrial context, model, and solution method. In-
ternational Transactions in Operational Research, 10(6), 547–
563.

Sriskandarajah, C., & Ladet, P. (1986). Some no-wait shops scheduling
problems: complexity aspect. European Journal of Operational
Research, 24(3), 424–438.

Sviridenko, M., & Woeginger, G. J. (2000). Approximability and in-
approximability results for no-wait shop scheduling. In 41st An-
nual symposium on foundations of computer science (FOCS)
(pp. 116–125).

Vairaktarakis, G. L. (2003). Simple algorithms for Gilmore–Gomory’s
traveling salesman and related problems. Journal of Scheduling,
6(6), 499–520.

Wang, Z., Xing, W., & Bai, F. (2005). No-wait flexible flowshop
scheduling with no-idle machines. Operations Research Letters,
33, 609–614.

West, D. B. (2001). Introduction to graph theory (2nd edn.). Engle-
wood Cliffs: Prentice-Hall.

Author's personal copy

	On Eulerian extensions and their application to no-wait flowshop scheduling
	Abstract
	Introduction
	Related work
	Our contribution
	Organization of the paper

	Makespan versus interruptions
	Solving two-stage no-wait flowshop problems
	Complexity of minimizing the number of interruptions
	Hardness for scheduling on three stages
	More hardness results

	Alternative scheduling models
	Maximizing the number of non-interruptions
	A model combining G and Cmax

	Conclusions
	References

