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Abstract. We investigate the problem of scheduling the maintenance
of edges in a network, motivated by the goal of minimizing outages in
transportation or telecommunication networks. We focus on maintaining
connectivity between two nodes over time; for the special case of path
networks, this is related to the problem of minimizing the busy time of
machines.

We show that the problem can be solved in polynomial time in arbi-
trary networks if preemption is allowed. If preemption is restricted to
integral time points, the problem is NP-hard and in the non-preemptive
case we give strong non-approximability results. Furthermore, we give
tight bounds on the power of preemption, that is, the maximum ratio of
the values of non-preemptive and preemptive optimal solutions.

Interestingly, the preemptive and the non-preemptive problem can be
solved efficiently on paths, whereas we show that mixing both leads to a
weakly NP-hard problem that allows for a simple 2-approximation.
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1 Introduction

Transportation and telecommunication networks are important backbones of
modern infrastructure and have been a major focus of research in combinatorial
optimization and other areas. Research on such networks usually concentrates
on optimizing their usage, for example by maximizing throughput or minimizing
costs. In the majority of the studied optimization models it is assumed that the
network is permanently available, and our choices only consist in deciding which
parts of the network to use at each point in time.

Practical transportation and telecommunication networks, however, can gen-
erally not be used non-stop. Be it due to wear-and-tear, repairs, or moderniza-
tions of the network, there are times when parts of the network are unavailable.
We study how to schedule and coordinate such maintenance in different parts of
the network to ensure connectivity.

While network problems and scheduling problems individually are fairly well
understood, the combination of both areas that results from scheduling network
maintenance has only recently received some attention [1,2,4,11,16] and is the-
oretically hardly understood.

Problem Definition. In this paper, we study connectivity problems which are
fundamental in this context. In these problems, we aim to schedule the mainte-
nance of edges in a network in such a way as to preserve connectivity between
two designated vertices. Given a network and maintenance jobs with processing
times and feasible time windows, we need to decide on the temporal allocation
of the maintenance jobs. While a maintenance on an edge is performed, the
edge is not available. We distinguish between MINCONNECTIVITY, the prob-
lem in which we minimize the total time in which the network is disconnected,
and MAXCONNECTIVITY, the problem in which we maximize the total time in
which it is connected.

In both of these problems, we are given an undirected graph G = (V,E)
with two distinguished vertices s+, s− ∈ V . We assume w. l. o. g. that the graph
is simple; we can replace a parallel edge {u,w} by a new node v and two edges
{u, v} , {v, w}. Every edge e ∈ E needs to undergo pe ∈ Z≥0 time units of
maintenance within the time window [re, de] with re, de ∈ Z≥0, where re is
called the release date and de is called the deadline of the maintenance job for
edge e. An edge e = {u, v} ∈ E that is maintained at time t, is not available at t
in the graph G. We consider preemptive and non-preemptive maintenance jobs.
If a job must be scheduled non-preemptively then, once it is started, it must run
until completion without any interruption. If a job is allowed to be preempted,
then its processing can be interrupted at any time and may resume at any later
time without incurring extra cost.

A schedule S for G assigns the maintenance job of every edge e ∈ E to
a single time interval (if non-preemptive) or a set of disjoint time intervals (if
preemptive) S(e) := {[a1, b1], . . . , [ak, bk]} with re ≤ ai ≤ bi ≤ de for i ∈ [k] and∑

[a,b]∈S(e)(b − a) = pe. If not specified differently, we define T := maxe∈E de

as our time horizon. We do not limit the number of simultaneously maintained
edges.
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For a given maintenance schedule, we say that the network G is disconnected
at time t if there is no path from s+ to s− in G at time t, otherwise we call
the network G connected at time t. The goal is to find a maintenance schedule
for the network G so that the total time where G is disconnected is minimized
(MINCONNECTIVITY). We also study the maximization variant of the problem,
in which we want to find a schedule that maximizes the total time where G is
connected (MAXCONNECTIVITY).

Our Results. For preemptive maintenance jobs, we show that we can solve
both problems, MAXCONNECTIVITY and MINCONNECTIVITY, efficiently in
arbitrary networks (Theorem 1). This result crucially requires that we are free
to preempt jobs at arbitrary points in time. Under the restriction that we can
preempt jobs only at integral points in time, the problem becomes NP-hard.
More specifically, MAXCONNECTIVITY does not admit a (2 − ε)-approximation
algorithm for any ε > 0 in this case, and MINCONNECTIVITY is inapproximable
(Theorem 2), unless P = NP. By inapproximable, we mean that it is NP-complete
to decide whether the optimal objective value is zero or positive, leading to
unbounded approximation factors.

This is true even for unit-size jobs. This complexity result is interesting and
may be surprising, as it is in contrast to results for standard scheduling prob-
lems, without an underlying network. Here, the restriction to integral preemption
typically does not increase the problem complexity when all other input parame-
ters are integral. However, the same question remains open in a related problem
concerning the busy-time in scheduling, studied in [7,8].

For non-preemptive instances, we establish that there is no (c 3
√|E|)-ap-

proximation algorithm for MAXCONNECTIVITY for some constant c > 0 and
that MINCONNECTIVITY is inapproximable even on disjoint paths between two
nodes s and t, unless P = NP (Theorems 3 and 4). On the positive side, we
provide an (�+1)-approximation algorithm for MAXCONNECTIVITY in general
graphs (Theorem 6), where � is the number of distinct latest start times (deadline
minus processing time) for jobs.

We use the notion power of preemption to capture the benefit of allowing
arbitrary job preemption. The power of preemption is a commonly used measure
for the impact of preemption in scheduling [6,10,18,19]. Other terms used in this
context include price of non-preemption [9], benefit of preemption [17] and gain
of preemption [12]. It is defined as the maximum ratio of the objective values
of an optimal non-preemptive and an optimal preemptive solution. We show
that the power of preemption is Θ(log |E|) for MINCONNECTIVITY on a path
(Theorem 7) and unbounded for MAXCONNECTIVITY on a path (Theorem8).
This is in contrast to other scheduling problems, where the power of preemption
is constant, e. g. [10,18].

On paths, we show that mixed instances, which have both preemptive and
non-preemptive jobs, are weakly NP-hard (Theorem 9). This hardness result
is of particular interest, as both purely non-preemptive and purely preemp-
tive instances can be solved efficiently on a path (see Theorem 1 and [14]).
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Furthermore, we give a simple 2-approximation algorithm for mixed instances
of MINCONNECTIVITY (Theorem 10).

Related Work. The concept of combining scheduling with network problems
has been considered by different communities lately. However, the specific prob-
lem of only maintaining connectivity over time between two designated nodes
has not been studied to our knowledge. Boland et al. [2–4] study the combina-
tion of non-preemptive arc maintenance in a transport network, motivated by
annual maintenance planning for the Hunter Valley Coal Chain [5]. Their goal is
to schedule maintenance such that the maximum s-t-flow over time in the net-
work with zero transit times is maximized. They show strong NP-hardness for
their problem and describe various heuristics and IP based methods to address
it. Also, they show in [3] that in their non-preemptive setting, if the input is
integer, there is always an optimal solution that starts all jobs at integer time
points. In [2], they consider a variant of their problem, where the number of
concurrently performable maintenances is bounded by a constant.

Their model generalizes ours in two ways – it has capacities and the objec-
tive is to maximize the total flow value. As a consequence of this, their IP-based
methods carry over to our setting, but these methods are of course not efficient.
Their hardness results do not carry over, since they rely on the capacities and the
different objective. However, our hardness results – in particular our approxima-
tion hardness results – carry over to their setting, illustrating why their IP-based
models are a good approach for some of these problems.

Bley et al. [1] study how to upgrade a telecommunication network to a new
technology employing a bounded number of technicians. Their goal is to minimize
the total service disruption caused by downtimes. A major difference to our
problem is that there is a set of given paths that shall be upgraded and a path
can only be used if it is either completely upgraded or not upgraded. They give
ILP-based approaches for solving this problem and show strong NP-hardness
for a non-constant number of paths by reduction from the linear arrangement
problem.

Nurre et al. [16] consider the problem of restoring arcs in a network after a
major disruption, with restoration per time step being bounded by the available
work force. Such network design problems over time have also been considered
by Kalinowski et al. [13].

In scheduling, minimizing the busy time refers to minimizing the amount of
time for which a machine is used. Such problems have applications for instance
in the context of energy management [15] or fiber management in optical net-
works [11]. They have been studied from the complexity and approximation point
of view in [7,11,14,15]. The problem of minimizing the busy time is equivalent
to our problem in the case of a path, because there we have connectivity at a
time point when no edge in the path is maintained, i. e., no machine is busy.

Thus, the results of Khandekar et al. [14] and Chang et al. [7] have direct
implications for us. They show that minimizing busy time can be done efficiently
for purely non-preemptive and purely preemptive instances, respectively.
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2 Preemptive Scheduling

In this section, we consider problem instances where all maintenance jobs can
be preempted.

Theorem 1. Both MAXCONNECTIVITY and MINCONNECTIVITY with pre-
emptive jobs can be solved optimally in polynomial time on arbitrary graphs.

Proof. We establish a linear program (LP) for MAXCONNECTIVITY. Let TP =
{0}∪{re, de : e ∈ E} = {t0, t1, . . . , tk} be the set of all relevant time points with
t0 < t1 < · · · < tk. We define Ii := [ti−1, ti] and wi := |Ii| to be the length of
interval Ii for i = 1, . . . , k.

In our linear program we model connectivity during interval Ii by an (s+, s−)-
flow x(i), i ∈ {1, . . . , k}. To do so, we add for every undirected edge e = {u, v}
two directed arcs (u, v) and (v, u). Let A be the resulting arc set. With each
edge/arc we associate a capacity variable y

(i)
e , which represents the fraction of

availability of edge e in interval Ii. Hence, 1 − y
(i)
e gives the relative amount

of time spent on the maintenance of edge e in Ii. Additionally, the variable fi

expresses the fraction of availability for interval Ii.

max
k∑

i=1

wi · fi (1)

s.t.
∑

u:(v,u)∈A

x
(i)
(v,u) −

∑

u:(u,v)∈A

x
(i)
(u,v) =

⎧
⎪⎨

⎪⎩

fi ∀ i ∈ [k], v = s+,

0 ∀ i ∈ [k], v ∈ V \ {s+, s−},

−fi ∀ i ∈ [k], v = s−,

(2)
∑

i:Ii⊆[re,de]

(1 − y(i)
e )wi ≥ pe ∀ e ∈ E, (3)

x
(i)
(u,v), x

(i)
(v,u) ≤ y

(i)
{u,v} ∀ i ∈ [k], {u, v} ∈ E, (4)

fi ≤ 1 ∀ i ∈ [k], (5)

x
(i)
(u,v), x

(i)
(v,u), y

(i)
{u,v} ∈ [0, 1] ∀ i ∈ [k], {u, v} ∈ E. (6)

Notice that the LP is polynomial in the input size, since k ≤ 2|E|. We show
in Lemma 1 that this LP is a relaxation of preemptive MAXCONNECTIVITY on
general graphs and in Lemma2 that any optimal solution to it can be turned into
a feasible schedule with the same objective function value in polynomial time,
which proves the claim for MAXCONNECTIVITY. For MINCONNECTIVITY,
notice that any solution that maximizes the time in which s and t are con-
nected also minimizes the time in which s and t are disconnected – thus, we can
use the above LP there as well. ��
Lemma 1. The given LP is a relaxation of preemptive MAXCONNECTIVITY
on general graphs.
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Lemma 2. Any feasible LP solution can be turned into a feasible maintenance
schedule at no loss in the objective function value in polynomial time.

The statement of Theorem 1 crucially relies on the fact that we may preempt
jobs arbitrarily. However, if preemption is only possible at integral time points,
the problem becomes NP-hard even for unit-size jobs. This follows from the proof
of Theorem 3 for t1 = 0, t2 = 1, and T = 2.

Theorem 2. MAXCONNECTIVITY with preemption only at integral time points
is NP-hard and does not admit a (2 − ε)-approximation algorithm for any
ε > 0, unless P = NP. Furthermore, MINCONNECTIVITY with preemption only
at integral time points is inapproximable.

3 Non-preemptive Scheduling

We consider problem instances in which no job can be preempted. We show
that there is no (c 3

√|E|)-approximation algorithm for MAXCONNECTIVITY for
some c > 0. We also show that MINCONNECTIVITY is inapproximable, unless
P = NP. Furthermore, we give an (� + 1)-approximation algorithm, where � :=
| {de − pe | e ∈ E} | is the number of distinct latest start times for jobs.

To show the strong hardness of approximation for MAXCONNECTIVITY, we
begin with a weaker result which provides us with a crucial gadget.

Theorem 3. Non-preemptive MAXCONNECTIVITY does not admit a (2 − ε)-
approximation algorithm, for ε > 0, and non-preemptive MINCONNECTIVITY is
inapproximable, unless P = NP. This holds even for unit-size jobs.

Proof (Sketch). This is shown by a reduction from 3SAT. We construct a network
such that connectivity is possible only within two disjoint time slots [t1, t1 + 1]
and [t2, t2 + 1].

We show that this network admits a schedule with total connectivity time
greater than one if and only if the 3SAT-instance is a YES-instance. Further-
more, we show that if the total connectivity time is greater than one, then there
is a schedule with maximum total connectivity time of two. For this, we distin-
guish between variable paths and clause paths. By construction, variable paths
exist only in [t2, t2 + 1] and clause paths only in [t1, t1 + 1]. These paths walk
through variable gadgets which encapsulate the decision whether to set a vari-
able to TRUE or FALSE. A variable path ensures that we have a valid variable
assignment, and a clause path sets literals in a clause to TRUE. If and only if
both types of paths exist, then the 3SAT-instance is a YES-instance.

For t1 = 0, t2 = 1, and T = 2, this construction uses only unit-size jobs, and
in the MINCONNECTIVITY case YES-instances have an objective value of 0 and
NO-instances a value of 1. ��

We reuse the construction in the proof of Theorem3 repeatedly to obtain the
following improved lower bound.
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Theorem 4. Unless P = NP, there is no (c 3
√|E|)-approximation algorithm for

non-preemptive MAXCONNECTIVITY, for some constant c > 0.

Proof (Sketch). We show this by reduction from 3SAT. Let n be the number
of variables in the given 3SAT instance. Using the construction from Theorem3
repeatedly allows us to construct a network that has maximum connectivity
time n if the given 3SAT instance is a YES-instance and maximum connectivity
time 1 otherwise. This implies that there cannot be an (n − ε)-approximation
algorithm for non-preemptive MAXCONNECTIVITY, unless P = NP. Notice that
the construction in the proof of Theorem 3 has Θ(n) maintenance jobs and we
will introduce Θ(n2) copies of the construction, yielding |E| ≤ c · n3 for some
c > 0. Hence, we have n ≥ c′ 3

√|E| for some c′ > 0.
For the construction, we use n2−n copies of the 3SAT-network from the proof

of Theorem 3, where each copy uses different (t1, t2)-combinations with t1, t2 ∈
{0, . . . , n−1} and t1 	= t2. Considering special (s+, s−)-paths, a path labeled with
k allows connectivity only during [k, k +1], k = 0, . . . , n− 1, and passes through
every 3SAT-network with t1 = k or t2 = k. Notice that within a 3SAT-network we
have connectivity during both time slots if and only if the corresponding 3SAT-
instance is a YES-instance. Also, we know due to [3] that there is an optimal
solution which starts all jobs at integral times. Now, if the 3SAT-instance is a
YES-instance, there is a global schedule such that its restriction to every 3SAT-
network allows connectivity during both intervals. Thus each path with label
k ∈ {0, . . . , n − 1} allows connectivity during [k, k + 1]. This implies that the
maximum connectivity time is n.

Conversely, suppose there exists a global schedule with connectivity during
two time slots. Then there must exist two paths P1, P2 from s+ to s− with two
distinct labels, each realizing connectivity during one of both intervals. By con-
struction there is one 3SAT-network they both use. This implies by the proof of
Theorem 3, that the global schedule restricted to this 3SAT-network corresponds
to a satisfying truth assignment for the 3SAT-instance. ��

The results above hold for general graph classes, but even for graphs as simple
as disjoint paths between s and t, the problem remains strongly NP-hard.

Theorem 5. Non-preemptive MAXCONNECTIVITY is strongly NP-hard, and
non-preemptive MINCONNECTIVITY is inapproximable even if the given graph
consists only of disjoint paths between s and t.

We give an algorithm that computes an (� + 1)-approximation for non-
preemptive MAXCONNECTIVITY, where � ≤ |E| is the number of different time
points de−pe, e ∈ E. The basic idea is that we consider a set of �+1 feasible main-
tenance schedules, whose total time of connectivity upper bounds the maximum
total connectivity time of a single schedule. Then the schedule with maximum
connectivity time among our set of � + 1 schedules is an (� + 1)-approximation.

The schedules we consider start every job either immediately at its release
date, or at the latest possible time. In the latter case it finishes exactly at the
deadline. More precisely, for a fixed time point t, we start the maintenance of all
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edges e ∈ E with de − pe ≥ t at their latest possible start time de − pe. All other
edges start maintenance at their release date re. This yields at most � + 1 ≤
|E| + 1 different schedules St, as for increasing t, each time point where de − pe

is passed for some edge e defines a new schedule. Algorithm 1 formally describes
this procedure, where E(t) := {e ∈ E : e is not maintained at t}.

Algorithm 1. Approx. Algorithm for Non-preemptive MAXCONNECTIVITY
1: Let t1 < · · · < t� be all different time points de − pe, e ∈ E, t0 = 0 and t�+1 = T .
2: Let Si be the schedule, where all edges e with de − pe < ti start maintenance at re

and all other edges at de − pe, i = 1, . . . , � + 1.
3: For each Si, initialize total connectivity time c(ti) ← 0, i = 1, . . . , � + 1.
4: for i = 1 to � + 1 do
5: Partition the interval [ti−1, ti] into subintervals such that each time point re, re+

pe, de, e ∈ E, in this interval defines a subinterval bound.
6: for all subintervals [a, b] ⊆ [ti−1, ti] do
7: if (V, E(1/2 · (a + b))) contains an (s+, s−)-path for Si then
8: Increase c(ti) by b − a.
9: return Schedule Si for which c(ti), i = 1, . . . , � + 1, is maximized.

Algorithm 1 considers finitely many intervals, as all (sub-)interval bounds are
defined by a time point re, re + pe, de − pe or de of some e ∈ E. As we can check
the network for (s+, s−)-connectivity in polynomial time, and the algorithm does
this for each (sub-)interval, Algorithm1 runs in polynomial time.

Theorem 6. Algorithm1 is an (� + 1)-approximation algorithm for non-pre-
emptive MAXCONNECTIVITY on general graphs, with � ≤ |E| being the number
of different time points de − pe, e ∈ E.

4 Power of Preemption

We first focus on MINCONNECTIVITY on a path and analyze how much we
can gain by allowing preemption. First, we show that there is an algorithm that
computes a non-preemptive schedule whose value is bounded by O(log |E|) times
the value of an optimal preemptive schedule. Second, we argue that one cannot
gain more than a factor of Ω(log |E|) by allowing preemption.

Theorem 7. The power of preemption is Θ(log |E|) for MINCONNECTIVITY
on a path.

Proof. Observe that if at least one edge of a path is maintained at time t, then the
whole path is disconnected at t. We give an algorithm for MINCONNECTIVITY
on a path that constructs a non-preemptive schedule with cost at most O(log |E|)
times the cost of an optimal preemptive schedule.

We first compute an optimal preemptive schedule. This can be done in poly-
nomial time by Theorem 1. Let xt be a variable that is 1 if there exists a job j
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that is processed at time t and 0 otherwise. We shall refer to x also as the main-
tenance profile. Furthermore, let a :=

∫ T

0
xt dt be the active time, i.e., the total

time of maintenance. Then we apply the following splitting procedure. We com-
pute the time point t̄ where half of the maintenance is done, i.e.,

∫ t̄

0
xt dt = a/2.

Let E(t) := {e ∈ E | re ≤ t ∧ de ≥ t} and pmax := maxe∈E(t) pe. We reserve the
interval [t̄ − pmax, t̄ + pmax] for the maintenance of the jobs in E(t̄), although we
might not need the whole interval. We schedule each job in E(t̄) around t̄ so that
the processing time before and after t̄ is the same. If the release date (deadline)
of a jobs does not allow this, then we start (complete) the job at its release date
(deadline). Then we mark the jobs in E(t̄) as scheduled and delete them from
the preemptive schedule.

This splitting procedure splits the whole problem into two separate instances
E1 := {e ∈ E | de < t̄} and E2 := {e ∈ E | re > t̄}. Note that in each of these
sub-instances the total active time in the preemptive schedule is at most a/2.
We apply the splitting procedure to both sub-instances and follow the recursive
structure of the splitting procedure until all jobs are scheduled. ��
Lemma 3. For MINCONNECTIVITY on a path, the given algorithm constructs
a non-preemptive schedule with cost O(log |E|) times the cost of an optimal pre-
emptive schedule.

Proof. The progression of the algorithm can be described by a binary tree in
which a node corresponds to a partial schedule generated by the splitting pro-
cedure for a subset of the job and edge set E. The root node corresponds to the
partial schedule for E(t̄) and the (possibly) two children of the root correspond
to the partial schedules generated by the splitting procedure for the two sub-
problems with initial job sets E1 and E2. We can cut a branch if the initial set
of jobs is empty in the corresponding subproblem. We associate with every node
v of this tree B two values (sv, av) where sv is the number of scheduled jobs in
the subproblem corresponding to v and av is the amount of maintenance time
spent for the scheduled jobs.

The binary tree B has the following properties. First, sv ≥ 1 holds for all
v ∈ B, because the preemptive schedule processes some job at the midpoint
t̄v which means that there must be a job e ∈ E with re ≤ t̄v ∧ de ≥ t̄v. This
observation implies that the tree B can have at most |E| nodes and since we
want to bound the worst total cost we can assume w.l.o.g. that B has exactly
|E| nodes. Second,

∑
v∈B av =

∫ T

0
yt dt where yt is the maintenance profile of

the non-preemptive solution.
The cost av of the root node (level-0 node) is bounded by 2pmax ≤ 2a. The

cost of each level-1 node is bounded by 2 · a/2 = a, so the total cost on level 1
is also at most 2a. It is easy to verify that this is invariant, i.e., the total cost at
level i is at most 2a for all i ≥ 0, since the worst node cost av halves from level
i to level i + 1, but the number of nodes doubles in the worst case. We obtain
the worst total cost when B is a complete balanced binary tree. This tree has
at most O(log |E|) levels and therefore the worst total cost is a · O(log |E|). The
total cost of the preemptive schedule is a. ��
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We now provide a matching lower bound for the power of preemption on a path.

Lemma 4. The power of non-preemption is Ω(log |E|) for MINCONNECTIVITY
on a path.

Proof. We construct a path with |E| edges and divide the |E| jobs into � levels
such that level i contains exactly i jobs for 1 ≤ i ≤ �. Hence, we have |E| =
�(�+1)/2 jobs. Let P be a sufficiently large integer such that all of the following
numbers are integers. Let the jth job of level i have release date (j − 1)P/i,
deadline (j/i)P , and processing time P/i, where 1 ≤ j ≤ i. Note that now no
job has flexibility within its time window, and thus the value of the resulting
schedule is P .

We now modify the instance as follows. At every time point t where at least
one job has a release date and another job has a deadline, we stretch the time
horizon by inserting a gap of size P. This stretching at time t can be done by
adding a value of P to all time points after the time point t, and also adding
a value of P to all release dates at time t. The deadlines up to time t remain
the same. Observe that the value of the optimal preemptive schedule is still P ,
because when introducing the gaps we can move the initial schedule accordingly
such that we do not maintain any job within the gaps of size P .

Let us consider the optimal non-preemptive schedule. The cost of scheduling
the only job at level 1 is P . In parallel to this job we can schedule at most one
job from each other level, without having additional cost. This is guaranteed
by the introduced gaps. At level 2 we can fix the remaining job with additional
cost P/2. As before, in parallel to this fixed job, we can schedule at most one
job from each level i where 3 ≤ i ≤ �. Applying the same argument to the next
levels, we notice that for each level i we introduce an additional cost of value
P/i. Thus the total cost is at least

∑�
i=1 P/i ∈ Ω(P log �) with � ∈ Θ(

√|E|). ��
Theorem 8. For non-preemptive MAXCONNECTIVITY on a path the power of
preemption is unbounded.

5 Mixed Scheduling

We know that both the non-preemptive and preemptive MAXCONNECTIVITY
and MINCONNECTIVITY on a path are solvable in polynomial time by Theo-
rem 1 and [14, Theorem 9], respectively. Notice that the parameter g in [14] is in
our setting ∞. Interestingly, the complexity changes when mixing the two job
types – even on a simple path.

Theorem 9. MAXCONNECTIVITY and MINCONNECTIVITY with preemptive
and non-preemptive maintenance jobs is weakly NP-hard, even on a path.

Theorem 10. There is a 2-approximation algorithm for MINCONNECTIVITY
on a path with preemptive and non-preemptive maintenance jobs.
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6 Conclusion

Combining network flows with scheduling aspects is a very recent field of
research. While there are solutions using IP based methods and heuristics, exact
and approximation algorithms have not been considered extensively. We provide
strong hardness results for connectivity problems, which is inherent to all forms
of maintenance scheduling, and give algorithms for tractable cases.

In particular, the absence of c 3
√|E|-approximation algorithms for some c > 0

for general graphs indicates that heuristics and IP-based methods [2–4] are a
good way of approaching this problem. An interesting open question is whether
the inapproximability results carry over to series-parallel graphs, as the network
motivating [2–4] is series-parallel. Our results on the power of preemption as well
as the efficient algorithm for preemptive instances show that allowing preemption
is very desirable. Thus, it could be interesting to study models where preemption
is allowed, but comes at a cost to make it more realistic.

On a path, our results have implications for minimizing busy time, as we want
to minimize the number of times where some edge on the path is maintained.
Here, an interesting open question is whether the 2-approximation for the mixed
case can be improved, e.g. by finding a pseudo-polynomial algorithm, a better
approximation ratio, or conversely, to show an inapproximability result for it.
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