
1

Erratum for “Scheduling real-time
mixed-criticality jobs”

Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Pontus Ekberg, Haohan Li,
Alberto Marchetti-Spaccamela, Nicole Megow, and Leen Stougie

Abstract—This is an erratum for “Scheduling real-time
mixed-criticality jobs” (IEEE Transactions on Computers
2012 [1]) pointing out an error concerning the complexity
status, namely the membership in the class NP of deciding
schedulability of mixed-criticality (MC) instances. Mem-
bership was based on a lemma that appeared not to be
true if jobs have release dates. In this erratum we repair
the result by a direct argument.

This note repairs a flaw in [1]. The paper considers
the mixed-criticality real-time scheduling of a set of
n jobs on a single machine. Each job j = 1, . . . , n
is characterized by a release date rj , a deadline dj , a
criticality level χj and for each criticality level ℓ ≤ χj

a worst-case execution time Pj(ℓ). A system is MC-
schedulable if there exists a scheduling policy such
that for any realization of the system all jobs with
criticality level at least the realized level finish before
their deadlines. In [1] the decision problem if the
system is MC-schedulable is claimed to be in NP if
L the number of criticality levels is fixed.

Theorem A (Theorem 2 of [1]). The problem of de-
ciding MC-SCHEDULABILITY for L criticality levels
is in NP when L is a constant.

The proof of this theorem was based on Lemma 2
of [1] to which Kahil, Poplavko, Socci and Ben-
salem [2] provide a counter-example. In fact, the
lemma was also implicitly used in the proof of The-
orem 3 in [1], which states that the problem is in
PSPACE for arbitrary L.

We restate Lemma 2 in [1] and give a counter-
example similar to (but smaller than) the one in [2],
and point out the error in the proof. Then we repair the
proof of Theorem A. We also show that the validity
of Theorem 3 in [1] is not affected by the error in

Baruah is with Washington University in St. Louis, USA. Email:
baruah@wustl.edu. Bonifaci is with IASI-CNR, Rome, Italy.
D’Angelo is with GSSI, L’Aquila, Italy. Ekberg is with Uppsala
University, Sweden. Li is with The University of North Carolina,
Chapel Hill, NC, USA. Marchetti-Spaccamela is with Sapienza
University of Rome, Italy. Megow is with University of Bremen,
Germany. Stougie is with CWI & Vrije Universiteit, Amsterdam,
The Netherlands.

Lemma 2.

Claim 1 (Lemma 2 of [1]). If an instance is MC-
SCHEDULABLE, then there exists an optimal schedul-
ing policy that preempts each job j only at time points
t at which either some other job is released, or j
has executed for exactly Pj(i) units of time for some
1 ≤ i ≤ L.

The following example, with three jobs and 2 criti-
cality levels, which is smaller (and to our taste simpler)
than the one in [2], witnesses falseness of this lemma.

Example 1. Let’s consider the following instance of
three jobs:

job j rj dj χj Pj(1) Pj(2)
1 0 6 2 2 3
2 0 4 1 2 2
3 2 4 2 1 2

Observe that an optimal policy must have scheduled
by time 2 both,

(i) at least one unit of job 1, as otherwise if job 3
runs for P3(2) = 2 time units at criticality level 2,
jobs 3 and 1 cannot finish both by their deadlines,
and

(ii) at least one unit of job 2, as otherwise in criti-
cality level 1, we cannot finish both jobs 2 and 3
by their deadline 4.

Thus, both jobs 1 and 2 must be scheduled for one time
unit in the time interval [0, 2] which means that one job
must be preempted at some time t ≤ 1 even though t
is no release date and no job has finished Pj(i).

We remark that Lemma 2 is true for MC scheduling
instances with equal release dates. We don’t prove this
here, since it is irrelevant for the proof of Theorem A
below.

Proof of Theorem A: We will prove inductively
that for every integer constant L ≥ 2, deciding MC-
SCHEDULABILITY of instances with L criticality levels
is an NP problem. Membership to the class NP requires
that for a YES-answer a polynomial-time verifiable
certificate of polynomial length can be given. As a

2

base case, we first consider the case L = 2 and prove
that there exists a certificate for a YES-answer that
requires length and verification time O(nL).

We claim that the following is a certificate for posi-
tive MC-SCHEDULABILITY. For each job j we specify
Cj(1), the time at which job j has been assigned
Pj(1) processing time. Together with the release times
of the jobs, this partitions the time into at most 2n
intervals. For each interval Ii, we specify for each job
j the amount xij of processing time it receives in the
interval. This certificate has length O(n2).

To check that a certificate represents an admissible
schedule of jobs requires to verify that: i) for each Ii
the total processing requirement for all jobs assigned
to Ii is less than its length |Ii|, i.e.

j xij ≤ |Ii|;

ii) let Ii = [ai, bi), then for all i and j we have that
xij > 0 implies rj ≤ ai. Given a certificate repre-
senting an admissible schedule, to check feasibility
in case the system remains in criticality level 1 it is
sufficient to verify for each j that Cj(1) ≤ dj and

i|Cj(1)≥bi
xij = Pj(1). Thus level-1 schedulability

can be verified in O(n2) time.
Next, we need to check for each job j with criticality

level 2, that, if it does not signal completion at time
Cj(1), then the yet unfinished level-2 jobs can still
be scheduled before their deadlines. For each such
a job k its remaining processing time at level 2 is
Pk(2)−

i|Cj(1)≥bi

xik, which we denote by p′k. Thus,
deleting all level-1 jobs and all level-2 jobs k that have
Ck(1) < Cj(1), and setting for each job k with p′k > 0
its release date to r′k = max{rk, Cj(1)} creates a
single machine preemptive scheduling problem with
release times and deadlines, which, if schedulable,
is known to be schedulable by the Earliest Deadline
First (EDF) rule. The outcome of EDF can clearly be
verified in O(n) time. Hence, accounting all values of
j, which are O(n), yields a total of O(n2) verification
time for level-2 schedulability. Notice that an instance
that is not MC-schedulable cannot have such a certifi-
cate, since either the level 1 or the level 2 verification
step would fail.

To be precise we should also show that certificates
for YES-answers do not require exponentially small
values of xij and Cj(1). Assuming that all input
numbers are integers, clearly each Cj(1) can be taken
integer, whence all intervals Ii have integer boundaries.
Level-1 schedulability is certified by any feasible solu-
tion of the transportation problem constituted by supply
points i with supply the length |Ii| of Ii, and demand
points j with demand Pj(1). By total unimodularity, if
feasible, an integer solution must exist, yielding inte-
gral xij values. As a consequence, the EDF instances
that are checked for level-2 schedulability also have

integral release times and deadlines.
Now suppose NP-membership holds for L− 1 criti-

cality levels and consider the case with L levels. As in
the level-2 case we specify the level-1 behavior spec-
ifying Cj(1) for each job j and xij for each interval
i and j. By the same argument this requires input of
length O(n2) and we can verify level-1 schedulability
in O(n2) time.

Then for each job j with criticality level higher than
1 we need to verify MC-SCHEDULABILITY in case
it does not signal completion at time Cj(1). Again,
as in the level-2 case we redefine release time and
required remaining processing time at level-2 of all
jobs of level ≥ 2 that have not yet completed (at level
1), and obtain a system with L − 1 criticality levels.
By induction schedulability can be certificated using
input length and time O(nL−1). Since there are O(n)
jobs of level ≥ 2 we obtain a certificate of length and
verification time O(n · nL−1) = O(nL).

Example 2. In the case of Example 1, a possible guess
is that C1(1) = 5, C2(1) = 4, and C3(1) = 3;
the following is a corresponding certificate of MC-
SCHEDULABILITY:

interval xi1 xi2 xi3

I1 = [0, 2) 1 1 0
I2 = [2, 3) 0 0 1
I3 = [3, 4) 0 1 0
I4 = [4, 5) 1 0 0
I5 = [5, 6) 0 0 0

As mentioned earlier, the correctness of Theorem 3
in [1] is not compromised by the error in Lemma 2.
For the sake of completeness, we restate Theorem 3 in
[1] and its proof.

Theorem B (Theorem 3 of [1]). The problem of
deciding MC-SCHEDULABILITY is in PSPACE.

Proof: Consider the decision tree representation of
an optimal online policy. Notice that we cannot store
the whole tree in space that is polynomial in n when
L is large. However, we can still check that such a
tree exists by generating in depth first order all paths
from the root to a leaf, while making sure that the
common portion of consecutive paths is consistent. It is
enough to store two paths at a time. Each path requires
space proportional to its depth, which is O(n2L)
because Lemma 1 in [1] implies that there are O(nL)
preemptions between any two release dates. Moreover,
to keep track of the depth first search, a counter of size
O(n2L) suffices because there are O(2n

2L) potential
paths, the tree being binary. Finally, as in the proof

3

of Theorem 2 in [1] we verify for each path that the
decisions of the policy generate a valid schedule. This
yields a nondeterministic algorithm for deciding MC-
schedulability that uses polynomial space. The claim
follows by the well-known fact that nondeterminism
can be removed from the algorithm, at the cost of
squaring the required space.
We conclude with a summary of the complexity land-
scape.

− MC-SCHEDULABILITY is NP-complete for
any fixed number L ≥ 2 of criticality levels

− MC-SCHEDULABILITY is NP-hard but not
known to be in NP (for non-fixed L)

− MC-SCHEDULABILITY is in PSPACE.

REFERENCES

[1] S. K. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-
Spaccamela, N. Megow, and L. Stougie. Scheduling real-time
mixed-criticality jobs. IEEE Trans. Computers, 61(8):1140–
1152, 2012.

[2] R. Kahil, P. Poplavko, D. Socci, and S. Bensalem. Revisiting
the computational complexity of mixed-critical scheduling. In
Proceedings of the Fifth International Workshop on Mixed
Criticality Systems (WMC), pages 25–30, December 2017.

