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1 Introduction

In the popular whack-a-mole game moles pop up at certain holes from under
ground and, after some time, disappear again. The player is equipped with
a hammer and her goal is to hit as many moles as possible while they are
above the ground. Clearly, from the viewpoint of the player this game is an
online optimization problem since the times and positions where moles will
peek out are not known in advance. She has to decide without knowledge of
the future which of the currently visible moles to whack and how to move the
hammer into a “promising” position. What is a good strategy for whacking
moles (if there exists any)? How much better could one perform if one had
magical powers and knew in advance where moles will show up? How hard is
it to compute an optimal solution offline? In this paper we investigate all of
the above questions. It will turn out that for the analysis two parameters play
a crucial role: the time a mole stays above ground and the maximum number
of moles that can be in one hole simultaneously.

The whack-a-mole problem with popup duration T ≥ 0 and mole-per-hole
limit N (briefly whamT,N) can be formulated in mathematical terms as fol-
lows: We are given a metric space M = (X, d) with a distinguished ori-
gin 0 ∈ X and a sequence σ = (r1, . . . , rm) of requests (moles). A server
(hammer) moves on the metric space M at unit speed. It starts in the origin
at time 0. Each request rj = (tj, pj) specifies a release time tj and a point
(hole) pj ∈ X where the mole pops up. The mole-per-hole-limit N denotes
the maximum number of moles that are allowed to peek out of the same hole
simultaneously for a positive amount of time (this includes moles that have
been whacked and in reality are no longer present). A request rj is served if
the server reaches the point pj in the time interval [tj, tj + T ]. We will refer
to tj +T as the deadline of the request. The goal is to whack as many moles as
possible. If no confusion can occur we write only wham instead of whamT,N .

An online algorithm learns about the existence of a request only at its release
time. We evaluate the quality of online algorithms by competitive analysis [5],
which has become a standard yardstick to measure the performance. An algo-
rithm alg for wham is called c-competitive if for any instance the number of
moles whacked by alg is at least 1/c times the number of moles caught by an
optimal offline algorithm opt. If alg is randomized, then alg(σ) is replaced
by its expected value E[alg(σ)] (this corresponds to the oblivious adversary
model, see [5]). The competitive ratio of alg is the infimum over all c such
that alg is c-competitive. In the literature, competitiveness is sometimes de-
fined allowing an additional additive constant, b, which means for wham that
an online algorithm may whack at most b moles less than 1/c times the op-
timum. For all our lower bounds we can easily extend the constructions (by
“smart” repetition which makes the offline optimum profit arbitrarily large)
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and therefore neglect this additive constant. The first two of the questions
raised above amount to asking which competitive ratios are achievable by
online algorithms.

In this paper we mainly study the wham on two different metric spaces: the
(truncated) line and the uniform metric space. The (truncated) line is the
classical setup for the whack-a-mole game. The motivation for studying the
uniform metric space (a complete graph with unit edge weights) is that “in
practice” it does barely matter between which points the hammer is moved: the
main issue is whether the hammer is moved (and to which point) or whether
it remains at its current location.

1.1 Related work.

The wham falls into the class of online dial-a-ride problems. In an online
dial-a-ride problem objects must be transported between points in a metric
space by a server of limited capacity. Transportation requests arrive online,
specifying the objects to be transported and the corresponding source and
destination. If for each request its source and destination coincide, the result-
ing problem is usually referred to as the online traveling salesman problem
(OlTsp). The wham is the OlTsp with the objective to maximize the num-
ber of requests served before their deadlines.

The OlTsp has been studied for the objectives of minimizing the makespan
[1,2,6], the weighted sum of completion times [6,12], and the maximum/average
flow time [9,13]. Since dial-a-ride problems (where sources and destinations
need not coincide) can be viewed as generalizations of scheduling problems
(see e.g. [1]), lower bounds for scheduling problems carry over. In [3], Baruah
et al. show that no deterministic algorithm can achieve a constant competitive
ratio for the scheduling problem of maximizing the number of jobs completed
before their deadlines. Kalyanasundaram and Pruhs [15] show that for every
instance at least one of two deterministic algorithms is constant competitive,
and thus they provide a randomized algorithm which is constant competitive.
However, it is not clear whether and how their results carry over to the more
general class of dial-a-ride problems.

The wham has also been investigated by Irani, Lu and Regan [10] under the
name “dynamic traveling repair problem”. The authors give two deterministic
algorithms for the whamT,N in general metric spaces with competitive ratios
that are formulated in terms of the diameter of the metric space. Their ratios
translated into the notation used in this paper and restricted to the uniform
metric space are 3T

T−2
and 4

⌈

2T
T−1

⌉ (⌈

2T
T−1

⌉

+ 1
)

, respectively. We improve these
results in several ways.
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upper bound lower bound

L ≤ T/4 1 1

L = T 3T + 1 max{T + 1, b3T/2c}

L > T — “∞” (same as on R+ and R)

Table 1
Competitiveness results for the whamT,N=1 on the truncated line [−L,L].

upper bound lower bound

T ≥ 2
dbT/2c + T e

bT/2c
∈ [3, 5] 2

(see Figure 3 for a plot)

1 < T < 2 2N 2

T = 1 2 (for all tj integral) 2 (for all tj integral)

2N (for general tj) 2N (for general tj)

Table 2
Competitiveness results for the whamT,N on the uniform metric space.

1.2 Our contribution.

The contributions of this paper are twofold. First, we provide complexity re-
sults for the offline problem offline-wham. We derive a dynamic program
for the offline-wham on unweighted graphs with integral release times and
deadlines, which runs in time O(nm(T +m)(∆+1)2T ), where n is the number
of nodes in the space, m denotes the total number of moles and ∆ is the max-
imum degree. The algorithm runs in polynomial time, if (∆+1)2T is bounded
by a polynomial in the input size. We complement our solvability result by
NP-hardness results.

Our main contribution lies in the analysis of the online problem wham. We
show that no deterministic algorithm for the wham on the line can achieve
a constant competitive ratio. This unfortunate situation remains true even if
one allows randomization.

If the line is restricted to a finite interval [−L, L], the situation changes at
the moment where L ≤ T (for L > T the same lower bounds as in the case
of the unbounded line apply). Here, we give a deterministic algorithm with
competitive ratio 3T + 1 (see Table 1).

From the viewpoint of the whack-a-mole player, the situation on the uniform
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metric space is better than on the line. Our results for this case are summarized
in Table 2. We conclude our study of online algorithms by showing how our
results extend to the case of multiple servers.

Our results improve and extend those given in [10] in the following ways: For
the line segment [−T, T ] and the uniform metric space with T = 1 our al-
gorithms are the first competitive ones, since the bounds of [10] cannot be
applied. Moreover, for the uniform metric space we decrease known competi-
tive ratios substantially. For instance, for popup duration T = 2, our algorithm
iwtm achieves a competitive ratio of 3, while the results in [10] yield a ratio
of 80. Surprisingly all of our competitiveness results are obtained by simple
(“folklore”) algorithms.

In terms of lower bounds, the paper [10] shows that there is a metric space
in which no deterministic algorithm can achieve a constant competitive ratio.
We show that this results is already true on the real line and against more
restricted adversary models.

2 The complexity of offline whack-a-mole

In this section we investigate the complexity of the offline problem offline-

wham where all moles and their respective release dates are known in advance.
We first give a polynomial-time algorithm for a special class of the problem.
Then, we show that offline-wham is NP-hard on the line.

In this section we slightly diverge from the notation used for the online problem
in allowing more general deadlines dj ≥ tj for the requests than just dj = tj+T ,
where T is the popup duration. In this more general context T will denote the
maximum popup duration of any mole. We also allow a weight nj ≥ 0 to be
associated with request rj. The goal of the problem becomes to maximize the
weight of the whacked moles.

2.1 When whacking is easy

We consider the following scenario: The metric space M = (X, d) has n points
and is induced by an undirected unweighted graph G = (V, E) with V = X,
i.e., for each pair of points from the metric space M we have that d(x, y) equals
the shortest path length in G between vertices x and y. We also assume that
for each mole the release date tj ≥ 1 and the deadline dj are integers.

Theorem 1 Suppose that the metric space is induced by an unweighted graph

of maximum degree ∆. Then, the offline-wham with integral tj and dj can
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be solved in time O(nm(T + m)(∆ + 1)2T ), where T := max1≤j≤m(dj − tj)
is the longest time a mole stays above the ground; n denotes the number of

vertices in the graph and m is the total number of requests.

PROOF. The time bound claimed is achieved by a simple dynamic program-
ming algorithm. Let 0 < t1 < t2 < · · · < tk with k ≤ m be the (distinct) times
where moles show up. We set t0 := 0.

The idea for a dynamic programming algorithm is the following: For each
relevant point t in time and each vertex v ∈ V we compute the maximum
number of moles caught subject to the constraint that at time t we end up
at v. Essentially the only issue in the design of the algorithm is how one keeps
track of moles that have been whacked “on the way”. The key observation is
that for any time t that we consider the only moles that need to be accounted
for carefully are those ones that have popped up in the time interval [t−T, t].
Any mole that popped up before time t − T will have disappeared at time t
anyway. This allows us to use a limited memory of the past.

Given a vertex v, a history track is a sequence s = (v1, v2, . . . , vk = v) of
vertices in G such that for i = 1, . . . , k we have d(vi, vi+1) = 1 whenever
vi 6= vi+1. We define the time-span of the history track s to be d̄(s) = k.
The history track s encodes a route of starting at vertex v1 at some time t,
walking along edges of the graph and ending up at v at time t+ d̄(s) with the
interpretation if vi = vi+1 we remain at vertex vi for a unit of time. Notice
that in an unweighted graph with maximum degree at most ∆, there are at
most (∆ + 1)L history tracks of length L ∈ N ending at a specific vertex v.

Given the concept of a history track, the dynamic programming algorithm
is straightforward. For t ∈ {t0, . . . , tk}, v ∈ V and all history tracks s, with
d̄(s) = min(t, T ), ending in v at time t, we define M [t, v, s] to be the maximum
number of moles hit in any solution that starts in the origin at time 0, ends
in v at time t, and follows the history track s for the last d̄(s) units of time.

The values M [0, v, s] are all zero, since no mole raises its head before time 1.
Given all the values M [t, v, s] for all t = t0, . . . , tj−1, we can compute each
value M [tj , v, s] easily.

Assume that tj ≤ tj−1 + T . Then, from the history track s we can determine
a vertex v′ such that v′ must have been at vertex v′ a time tj−1. This task can
be achieved in time O(T ) by backtracking s. The value M [tj, v, s] can now be
computed from the O((∆ + 1)T ) values M [tj−1, v

′, s′] by adding the number
of moles whacked and subtracting the number of moles accounted for twice.
The latter task is easy to achieve in time O(T + m) given the history tracks s
and s′. Hence, the time needed to compute M [tj , v, s] is O((T + m)(∆ + 1)T ).
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It remains to treat the case that tj > tj−1 + T . Let t := tj−1 + T . Notice
that no mole can be reached after time t and before time tj, since all moles
released no later than tj−1 will have disappeared by time t. Any solution that
ends up at vertex v at time tj must have been at some vertex v′ at time t. We
first compute the “auxiliary values” M [t, v′, s′] for all v′ ∈ V and all history
tracks s by the method outlined in the previous paragraph. Then, the value
M [tj , v, s] can be derived as the maximum over all values M [t, v ′, s′], where
the maximum ranges over all vertices v′ such that v can be reached by time tj

given that we are at v′ at time t and given the histories s and s′ (which must
coincide in the relevant part).

Since the dynamic programming table has O(nm(∆ + 1)T ) entries, the total
time complexity of the algorithms is in O(nm(T + m)(∆ + 1)2T ). �

The above dynamic program can easily be adjusted for metric spaces induced
by weighted graphs with integral edge weights. Each edge e is then replaced
by a path of w(e) vertices, where w(e) denotes the length of edge e. The time
bound for the above procedure becomes then O(n̄m(T +m)(∆+1)2T ), where
n̄ = n +

∑

e∈E(w(e) − 1). Hence, whenever (∆ + 1)2T is pseudo-polynomially
bounded, offline-wham can be solved in pseudo-polynomial time on these
weighted graphs.

2.2 When whacking is hard

It follows from Theorem 1 that offline-wham can be solved in polynomial
time if (∆ + 1)2T is bounded by a polynomial in the input size. On the other
hand, the problem on a graph with unit edge weights, all release times zero
and all deadlines equal to n, the number of holes, contains the Hamiltonian
Path Problem as a special case. Thus, it is NP-hard to solve, see e.g. [14].

Another special case of the offline-wham is obtained when at most one
mole is in a hole at a time, the metric space is the line and release dates
as well as deadlines are general. Tsitsiklis [16] showed that on this metric
space the traveling salesman or repairmain problem with general time windows
constraints is NP-complete. This implies that the offline-wham on the line
with general release dates and deadlines is NP-hard.

In his proof, Tsitsiklis uses the fact that the length of the time windows may
vary per request. This raises the question whether offline-wham on the line
with uniform popup durations is NP-hard. In the following theorem we show
that this is the case if one allows arbitrary weights to be associated with the
moles.
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Theorem 2 offline-wham on the line is NP-hard even if the time moles

stay above ground is equal for all moles, i.e., di − ti = dj − tj = T for all

requests ri, rj.

PROOF. We show the theorem by a reduction from partition, which is well
known to be NP-complete to solve [11,7]. An instance of partition consists
of n items ai ∈ Z

+, i = 1, . . . , n, with
∑

i ai = 2B. The question is whether
there exists a subset S ⊂ {1, . . . , n}, such that

∑

i∈S ai = B.

Given an instance of partition, we construct an instance Iwham for offline-

wham, with m = 3n requests. Let B = 1

2

∑

i ai and K = B + 1. The time
each mole stays above ground is T = 2B. There are 2n requests r+

i and
r−i , i = 1, . . . , n where r±i is released at time (2i − 1)K and has deadline
(2i − 1)K + T . The position of r+

i is K + ai with weight K + ai, and the
position of r−i equals −K with weight K. Finally, there are n requests r0

i

in the origin, where r0
i is released at time 2iK, has deadline 2iK + T , and

weight K.

We claim that at least 2nK + B moles can be whacked if and only if I is a
yes-instance for partition.

Let S be a partition of I, i.e.,
∑

i∈S ai = B. Then whacking the moles of
requests in the order (rα1

1 , r0
1, . . . , r

αn

n , r0
n), where αi = + if i ∈ S and αi = −

if i 6∈ S, is feasible and yields the desired bound, as tedious computation can
show.

Suppose conversely that there exists a route for the whacker such that it
reaches at least 2nK + B moles. Notice that as the locations of the holes of
requests r+

i and r−i are at least 2K > 2B apart, the whacker can whack at
most one of these requests. The moles of requests r+

i and r−i pop up after time
t+i−1 +T , and therefore the whacker cannot catch the moles of request r+

i−1 and
r+
i at the same time. The same is true for requests r0

i−1 and r0
i . Suppose the

whacker moves to the hole of r+
i or r−i after first whacking the moles of r0

i .
The earliest possible arrival time in the mole is at least 2iK + K = (2i + 1)K
and by this time the moles of r+

i and r−i have gone down again. Hence, when
whacking r0

i and either r+
i or r−i , the request r+

i or r−i need to be whacked
before r0

i . Not whacking the moles of r0
i or none of r+

i and r−i , results in a
tour in which at most (2n− 1)K + 2B < 2nK + B can be caught. Therefore,
the whacker needs to reach all moles popping up in the origin and for each
i it also needs to whack all moles of either r+

i or r−i . Hence, by the above
considerations we know that when at least 2nK + B moles are whacked, the
whacker needs to hit first the moles of r+

i or r−i and then those of r0
i before

going to the hole of request r+
i+1 or r−i+1.

Let S = {i : moles of r+
i are whacked} be the set of requests served in the
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positive part of the line. We claim that
∑

i∈S ai = B. Obviously
∑

i∈S ai ≥
B since the number of moles whacked is at least 2nK + B. Suppose that
∑

i∈S ai > B and let S ′ ⊆ S be the smallest subset of S such that if i, j ∈ S
with i < j and j ∈ S ′ then i ∈ S ′ and

∑

i∈S′ ai > B and let k = max S ′. Then
∑

i∈S′\{k} ai ≤ B. The whacker leaves the origin for request r+

k at time 2(k −
1)K+2

∑

i∈S′\{k} ai ≤ 2(k−1)K+2B < t0k. The next time the whacker reaches
the origin is 2kK +

∑

i∈S′ ai > 2kK + 2B and by then the moles of request r0
k

have gone under ground. Hence, it cannot reach the moles of request r0
k and

is not able to whack 2nK + B moles. �

3 Whack-a-mole on the line

In this and the following section we investigate the existence of competitive
algorithms for the wham. Our lower bound results are not only established
for the standard adversary, the optimal offline algorithm, but also for the more
restricted adversaries. We stress that our competitiveness results hold for the
stronger standard adversary.

3.1 How well we can’t whack

The optimal offline algorithm is often considered as an adversary, that speci-
fies the request sequence in a way that the online algorithm performs badly.
Besides the ordinary adversary that has unlimited power, there exist several
adversaries in the literature that are restricted in their power.

The non-abusive adversary of [13] is defined on the line, and it may only move
into a certain direction if there is still a pending request in this direction. For
wham we extend this definition by the restriction that the adversary may
only move in the direction of a request that it can reach before the deadline of
this request or it may go home, i.e., it may move back to the origin. A natural
extension to the uniform metric space studied in Section 4 is to require that
the adversary only moves on a direct shortest path to a pending request whose
deadline can be met.

The following theorem gives a lower bound on the half line R+ which clearly
implies the same bound for the complete line R (we remark that for the com-
plete line a simpler proof with a request sequence of only one mole can be
given).

Theorem 3 Let T ≥ 0 be arbitrary. No deterministic online algorithm can

achieve a constant competitive ratio for whamT,N on the half line R+ even
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against a non-abusive adversary. This result continues to hold even if N = 1.

PROOF. We prove the theorem for popup duration T = 1. This proof can be
extended to general T by multiplying each position and release time with T .
Moreover, our construction only uses a mole-per-hole-limit of N = 1.

For any integral constant c > 2, we show that there exists a request sequence
on which the adversary whacks at least c times as many moles as any deter-
ministic online algorithm. This implies the theorem. The adversarial sequence
consists of at most three parts.

σ1: In the first part a mole is released at each integral time point t in hole
t + 1.

σ2: At each integral time point, a mole pops up in hole 0.
σ3: At each integral time point t, a mole is released in hole t̂ + t + 1 − t̄.

The sequence starts at time t = 0 with σ1. Let t̂ ≤ c be the first integral point
in time at which the position of the algorithm’s whacker at time t palg(t) 6= t,
or t̂ = c if no such t ≤ c exists.

If palg(t̂) 6= t̂, then the adversary continues with subsequence σ1 up to time
at least ct̂. As palg(t̂) < t̂, the online algorithm cannot reach any of the moles
released at or after time t̂, and catches at most t̂ moles. The adversary, on the
other hand, can whack, by always moving to the right, all moles and serves at
least ct̂ requests.

If palg(t̂) = t̂, i.e., t̂ = c, the adversary stops subsequence σ1, after time
t̂ − 1, and continues the sequence with subsequence σ2 beginning at time t̂.
Let t̄ ≤ c2 + c + 1 be the first time c < t < c2 + c + 1 at which palg(t) = 1, or
t̄ = c2 + c + 1 in no such time c < t < c2 + c + 1 exists.

If t̄ = c2 + c + 1, then the sequence stops at this time. The algorithm has
not whacked any of the moles released in subsequence σ2, and thus has served
at most t̂ = c moles. The adversary, by staying in the origin, has reached all
moles of subsequence σ2, and thus killed at least c2 moles.

If t̄ < c2 + c + 1, the adversary stops the subsequence σ2 at time dt̄ − 1e and
continues with σ3 starting at time t̄. As palg(t̄) = 1 < t̂, the algorithm cannot
reach any of the requests released in the third subsequence, nor has it served
any of the requests in σ2. Hence, it has killed at most c moles. The adversary,
by moving to the right during the first subsequence, and remaining in hole t̂
during the second one, can reach all moles of the third subsequence, as well
as all moles of the first one. By continuing σ3 for at least c2 − c time units,
the adversary whacks at least c2 moles. �
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The negative result of Theorem 3 above raises the question whether random-
ized algorithms can perform better.

Theorem 4 For any T ≥ 0, no randomized algorithm achieves a constant

competitive ratio for whamT,N on the line R against an oblivious adversary.

The result remains true for N = 1.

PROOF. Suppose for the sake of a contradiction that there exists a c-competitive
randomized online algorithm for some constant c. Let K = dce+1, and consider
the holes xi = i(2T +1), for i = 0, 1, . . . , K −1. The adversarial sequence con-
sists of only one mole, released at time t̂. Let pi denote the probability that the
randomized whacker is within distance T of hole xi at time t̂ = (K−1)(2T +1),
As the distance between the holes is more than 2T , these probabilities sum
up to

∑

0≤i≤K−1 pi ≤ 1. Therefore, there is at least one hole xi where the algo-
rithm’s whacker is in reachable distance with probability pi ≤ 1/K. At time t̂
the adversary releases one mole in this hole xi. While the adversary certainly
catches that mole, the expected value for the algorithm is at most 1/K < 1/c
which is a contradiction to the assumption of a c-competitive algorithm. �

The lower bound results above suggest to restrict the metric space further.
In the sequel we consider the truncated line, [−L, L]. Before we embark on
lower and upper bound proofs, let us rule out the easy cases. If L > T , then no
constant competitive ratio can be achieved as a very simple one-mole-sequence
shows: suppose the whacker of an online algorithm is in the origin or on the
left of it at time T then release one mole in a position larger than T . On the
other hand, if L ≤ T/4, then a trivial algorithm which continuously moves
between the end points of the line segment is able to reach each request in time
and is therefore optimal. Hence, the only interesting case is T/4 < L ≤ T .

We consider the problem on the restricted line [−T, T ] with unit distances
between holes, that is, on [−T, T ] ∩ Z. Observe that the dynamic program
proposed in Section 2.1 solves the related offline-problem efficiently for con-
stant popup duration T and integral release dates. In the following theorem
we assume for ease of notation that T is integral. The result can be easily
transferred to non-integral values on the cost of at most 1 by replacing T
by bT c and adjusting the release dates.

Theorem 5 Let T ∈ N. No deterministic online algorithm for the whamT,N

on the line segment [−T, T ] ∩ Z can achieve a competitive ratio less than

max{NT + 1, N(b3T/2c)} even against a non-abusive adversary.

PROOF. At time 0 in each boundary position, T and −T , one mole is re-
leased. If an online algorithm does not catch a mole by time T then the
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0 TT/2−T

Fig. 1. Lower bound instance for any det. online algorithm ol on the truncated
line [−T, T ]; dashed line: adversary’s tour, solid line: ol’s tour]. Each request is
represented by a vertical line between the release date and deadline.

instance stops. Otherwise, assume w.l.o.g. that it started heading towards −T
(the movement must be started at time 0). Then, at time t = 1 another N −1
moles are released in hole T . Moreover, at each of the times t = 2, . . . , T , N
moles get released in holes T +1−t and at time t = T +1, . . . , b3T/2c N moles
appear in holes 2T +1− t. If at any time, the algorithm’s whacker changes its
direction, the sequence stops and the algorithm cannot catch any mole. The
construction is illustrated in Figure 1.

A simple calculation shows that no online algorithm is able to catch any of
the moles in [1, T ] ∩ Z (hence it whacks only a single mole in −T ) while the
adversary whacks all moles on the positive part of the line. Thus, N(b3T/2c)
is a lower bound on the competitive ratio.

The fact that NT + 1 is another lower bound on the competitive ratio is even
easier to establish. After two initial moles, with weight 1, released at time 0 in
−T and T , a second wave of T moles, each with weight N , is released at time T
in 1, 2, . . . , T (this assumes that the algorithm moves to the left initially). �

3.2 How well we can whack

As mentioned in the previous section, wham on the truncated line [−L, L],
with L ≤ T/4 or L > T are trivially easy or have been shown to be hopeless.
In this section, we only consider the line segment [−T, T ], for which we have
shown a max{NT + 1, Nb3T/2c} lower bound on the competitive ratio. For
this case, we analyze the following algorithm which is probably folklore; it can
be found also under different names like reopt or optimal [1,8].

Replan (rp)
At any moment in time, compute an optimal route on all pending requests,
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ending in the origin. Change the current route if and only if another route
allows to whack more moles.

Theorem 6 Algorithm rp achieves a competitive ratio of 3T+1 for whamT,N=1

on the line segment [−T, T ] ∩ Z.

PROOF. Assume that rp is not c-competitive; we prove the theorem by
yielding a contradiction for c ≥ 3T + 1. Let alg(σ) denote the number of
served requests for an algorithm alg on a sequence σ. Denote σ as a smallest
sequence for which rp(σ) < 1

c
opt(σ). Partition σ into σ = σ′ ∪ σc, where σc

consists of the last c requests. Note, that rp(σ′) ≤ rp(σ) since at any release
date tj of a request j in σ the old route of rp from time tj − ε is still a feasible
route. Then,

rp(σ′) ≤ rp(σ) <
1

c
opt(σ) ≤

1

c
(opt(σ′) + c) ≤ rp(σ′) + 1.

Due to the integrality of rp(σ) and rp(σ′), we know that rp(σ) = rp(σ′).
By definition of rp, that means that the algorithm does not change its route
for any request in σc and it does not whack any of those moles. On the other
hand, the optimal offline algorithm must serve all requests in σc. Otherwise
we could remove unwhacked requests from σc without changing the routes or
solution values of rp and opt and thus, the sequence σ was not a smallest
sequence satisfying rp(σ) < 1

c
opt(σ)

In the remainder we show that rp serves at least one request of σc, for c ≥
3T + 1, which is a contradiction to the previous observations, and thus, we
disprove the assumption that rp were not c-competitive for c ≥ 3T + 1.

Let tmax be the latest release date of moles in the sequence σ ′ whacked by rp.
We denote the time and position of the last mole whacked by rp by C` and p`,
respectively. Assume w.l.o.g. that p` ≥ 0 (the other case is symmetric). Note,
that C` ≤ tmax + T , and the time when the whacker returns in the origin is
C` + p` ≤ tmax + 2T .

By definition of σc, all requests rj ∈ σc have release dates tj ≥ tmax. If there is
any request released at or after rp ’s return to the origin, then the whacker is
able to catch it, which leads to the contradiction. Therefore, we assume that
tmax ≤ tj < C` + p` for all rj ∈ σc.

After time C`, there is no reachable pending mole from σ′ for rp. Hence, if
there is a request rj ∈ σc at a distance of at most T from p` with tj ≥ C`,
then rp catches at least one of these moles. This holds at least for all points
on the nonnegative halfline. Hence, in holes of the interval [0, T ] exluding the
hole p` cannot be more than one mole per hole in sequence σc, which sum up

13



to at most T moles. On the negative part of the line, at most two moles per
hole can be released in the time interval [tmax, C` + p`) of length less than 2T .

Hence, the number of moles in σc is not more than 3T , and for any c ≥ 3T +1
we have a contradiction. This completes the proof of a competitive ratio of
c = 3T + 1 for rp. �

We note that the above result directly generalizes to an upper bound of
3NT + 1 on the competitive ratio of rp for a general mole-per-hole limit
of N .

4 Whack-a-mole on the uniform metric space

Recall that the uniform metric space is induced by a complete graph with unit
edge weights. The number of vertices in this graph is n. Observe that for popup
duration T < 1 trivially no deterministic algorithm can be competitive against
the standard adversary. In case of the non-abusive adversary, the situation is
trivial again, since the adversary can never catch any mole except for those in
the origin.

4.1 How well we can’t whack

We remark that a lower bound of 2 for the wham on the uniform metric space
has been derived in [10]. Our construction uses fewer nodes in the metric space
and, more important, there is no positive amount of time where more than
one request is available at a single hole. Also, note that the lower bounds are
shown against the most restricted adversary, the non-abusive one.

Theorem 7 Let n ≥ 3T + 2, that is, T ≤ (n − 2)/3. No deterministic online

algorithm for the whamT,N=1 can achieve a competitive ratio smaller than 2
against a non-abusive adversary.

PROOF. The idea for our instance is the following: we make sure that at
any integral time t ≥ T two moles have their deadline and a new mole is
released in one of the respective holes, such that an optimal offline algorithm
can whack two moles per time unit but an online algorithm catches at most
one.

At each time t = 0, . . . , T −1 the adversary releases two moles: one in position
p1(t) = 2t + 1 and the other in p2(t) = 2t + 2. At time t = T, T + 1, . . . three
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moles are released: two moles are released in empty holes p1(t) and p2(t) and
the third mole, either, in p3(t) = p2(t− T ) if alg is in p1(t− T ) at time t, or,
in p3(t) = p1(t − T ), otherwise. Note that at time t, at most 3T moles have
deadline at least t, and as n ≥ 3T + 2, there are at least two holes left with
no moles at time t. �

In case of N ≥ 1 the above lower bound can be improved:

Theorem 8 No deterministic online algorithm for the whamT=1,N has a

competitive ratio less than 2N , even against a non-abusive adversary.

PROOF. After an initial step, a non-abusive adversary adv constructs a
sequence consisting of phases such that in each phase it whacks at least 2N
times as many moles as an online algorithm alg does. Each phase starts at a
time t when the adversary arrives in a hole. We denote by t′ the latest deadline
of the moles that are in this hole at time t. Note that t ≤ t′ < t + 1, since the
popup duration is 1. There are two possible positions for alg to be at time t:

Case (a) alg is in a vertex point different from the position of adv;
Case (b) alg is on an edge.

Moreover, if there are at the beginning of the phase some pending requests
released before time t then alg cannot reach any of them.

In Case (a), two moles are released at time t in holes where neither alg nor
adv are. If alg does not immediately go to one of these moles, it cannot whack
any of them, whereas the adversary catches one of these moles. Otherwise, at
time t̄ = max{t′, t+1/2} the adversary releases N moles in his current position
and N moles in a hole v that is not incident to the edge on which alg is. Thus,
alg cannot whack any of them. Hence, it whacks at most one mole, whereas
adv reaches 2N moles by remaining in his position until time t̄ and then
moving to v.

In Case (b), alg is in the interior of an edge and thus, it cannot reach any
vertex point which is not incident to this edge by time t + 1. The adversary
releases one mole in a free hole, i.e., a vertex point where no mole is and which
is not incident to the edge on which alg is. Hence, alg does not whack any
mole, and adv hits one mole.

An initial sequence consisting of two requests in two different holes each re-
leasing a single mole ensures that we end up either in Case (a) or Case (b).
This completes the proof. �
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Note that in the proof of the above lower bound we use the fact that release
dates may be non-integral. As we will see in the next section, this restriction
is essential, because for integral release dates we are able to provide a 2-
competitive algorithm.

For the sake of completeness we conclude this section of lower bounds with a
brief consideration of randomized algorithms. We can easily extend the deter-
ministic lower bound in Theorem 7 to a lower bound for randomized algorithms
by blowing up the number of possible holes. Instead of releasing at each time t
a mole in each of two free holes, we release moles in k ≥ 2 free holes. We argue
that for at least one of these holes the probability that the online server is in
this hole at time t + T is at most 1/k. The (k + 1)st mole at time t + T is
released in this hole. Then, the expected number of moles caught by an online
algorithm is from time t = T onwards 1

k
·2+ k−1

k
·1 = k+1

k
, whereas the optimal

offline algorithm can catch 2 moles.

Corollary 9 Each randomized algorithm has a competitive ratio of at least 2
on the uniform metric space.

4.2 How well we can whack

In this section we analyze simple algorithms for wham and give performance
guarantees for the online problem on a uniform metric space.

First Come First Kill (fcfk)
At any time t, move to a hole which contains a request with earliest release
date, breaking ties in favor of the point where the most moles are above
ground. If none of the moles that are above ground can be killed by the
algorithm, then the whacker does not move.

Theorem 10 Let T ≥ 1. Algorithm fcfk is 2N-competitive for the whamT,N

on the uniform metric space.

PROOF. Partition the input sequence into maximal subsequences, such that
each subsequence consists of requests that are released while fcfk is serving
continously, i.e., it is constantly moving between holes. We show that an op-
timal offline algorithm opt whacks at most 2N times as many moles as fcfk

does for each subsequence from which the theorem follows.

Consider such a subsequence σ′. We denote by Calg

j the time where algo-
rithm alg whacks request rj. If rj is not caught, then we set Calg

j = ∞.
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Define the time at which opt whacks its last mole of σ′ as

tmax = max{Copt

j : rj ∈ σ′ and Copt

j < ∞},

where we consider an optimum opt that whacks its last mole as early as
possible.

Moreover, we define tmin such that tmax−tmin is integral and minj∈σ′ tj ≤ tmin <
minj∈σ′ tj + 1. In each interval (t, t + 1] for t = tmin, . . . , tmax − 1, fcfk hits
at least one mole and opt cannot whack more than 2N moles. It remains to
show that the moles which are reached by opt before tmin can be compensated
for by fcfk.

If fcfk whacks its last mole of σ′ no later than time tmax, then opt catches
at most N moles in the interval (tmax − 1, tmax] since no new request can be
released at tmax due to the maximality of the subsequence σ′. Moreover, opt

can kill at most N moles in the interval (minj∈σ′ tj, tmin]. Therefore, the number
of moles reached by opt during the period before tmin can be accounted for by
the moles caught in the last interval by opt and thus, sum up to at most 2N .

On the other hand, if fcfk still whacks a mole from σ′ after time tmax, the
number of moles caught by opt during the first period is at most N times the
number of moles hit by fcfk after tmax. �

The following lemma shows that the competitive ratio of 2N is tight for fcfk,
even if one considers the more restricted adversary:

Lemma 11 Let T ≥ 1 be an integer. fcfk has no competitive ratio less

than 2N for the whamT,N on the uniform metric space against a non-abusive

adversary.

PROOF. At time t = 0, the adversary releases T requests in holes 1, . . . , T ,
each of them with weight 1. At time t = 1/2, in hole 2T + 1, a request is
released with N moles. At time t, for t = 1, . . . , T − 1, one request in hole
T + t is given with one mole and at time t + 1/2 a request with N moles is
given in 2T + 1 + t. At time t, for t = T, T + 1, . . ., one mole is popping up in
hole 1+(T + t−1) mod 2T . And at time t+1/2 two requests are given, each
with N moles: one in 2T + 1 + (t mod T ) and one in 3T + 1 + (t mod T ).
This sequence is visualized in Figure 2.

Up to time T , fcfk whacks the moles released at time 0. After time T it moves
to the hole with the earliest released request that it can reach. As the requests
with N moles are released 1/2 time unit later than the requests with a single
mole, fcfk is not able to whack any of the higher weighted requests. Hence, it
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Fig. 2. Lower bound sequence for fcfk. Each request is represented by a vertical
line between the release date and deadline. Thick lines illustrate requests with N
moles, the thin lines depict requests with single moles. The line segment is dashed
after the request has been served by an adversary adv, and dash-dotted after being
served by fcfk and adv. Notice that from time T onwards, fcfk serves all its
requests by their deadlines.

catches in each unit length time interval one mole. In each unit length interval
from time T +1/2 onwards, there is one hole where a request with N moles has
its deadline and a new request with N moles is released. Hence, the adversary
adv can whack 2N moles in every unit length time interval after time T . �

Recall that no deterministic online algorithm can be better than 2-competitive
(Theorem 7). Hence, by Theorem 10 we know that fcfk achieves a best-
possible competitive ratio in the case of a mole-per-hole limit of N = 1. For
general N but T = 1, fcfk is also best-possible by Theorem 8. For the special
case of integral release dates and T = 1, fcfk obtains a competitive ratio of 2
even for general N .

Theorem 12 If all release times are integral, then fcfk is 2-competitive for

the whamT=1,N on the uniform metric space.

PROOF. Due to the integral release dates, both, the optimal offline algo-
rithm opt and fcfk are in holes at integral points in time. Moreover, opt

serves at most two requests released at the same time because of the unit
popup duration. fcfk on the other hand, whacks at least the moles of one
request released at a certain time and by definition it chooses the request with
the highest number of moles. Therefore, it reaches at least half of the moles
whacked by opt. �
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Obviously, fcfk’s flaw lies in ignoring all requests with a later deadline even
though they could contribute with a higher weight to the objective value. In
order to overcome this drawback we consider an other algorithm which we
call Ignore and Whack the Most (iwtm). In this algorithm, we divide the
time horizon into intervals of length l = bT

2
c, and we denote these intervals by

Ii = ((i − 1)l, il), for i = 0, 1, 2, . . . , L, where IL is the last interval in which
moles are whacked. We say that at time t, the current interval is the interval
Ii for which t ∈ Ii. Note that these intervals only have a positive length for
T ≥ 2.

When formulating the algorithm iwtm we allow the algorithm to whack only a
subset of the moles available at a certain hole. Although our problem definition
would force all moles at v to be whacked, this condition can be enforced within
the algorithm by keeping a “virtual scenario”.

Ignore and Whack the Most (iwtm)
At any time when the whacker is in a hole, it moves to the hole with the
highest number of pending moles released in the previous interval. Only
those moles will be whacked at the hole.

Theorem 13 Let T ≥ 2 and c = dbT/2c+T e
bT/2c

. iwtm is c-competitive for the

whamT,N on the uniform metric space.

PROOF. Let ki denote the number of moles released in interval Ii, whacked
by opt, and let hi denote the number of moles whacked by iwtm during
interval Ii. Then

opt(σ) =
∑

i

ki, and iwtm(σ) =
∑

i

hi. (1)

Moreover, since no moles are released in the last interval IL, it follows that
kL = 0.

First note that iwtm is at integral time points always in a hole. Therefore,
during interval Ii+1 it can visit l holes. If it visits less than l holes, then the
number of requests released in interval Ii is less than l. Hence, opt cannot
kill more than hi+1 moles of those released in Ii.

Conversely, suppose that iwtm visits exactly l holes during interval Ii+1. The
optimum can visit at most dl + T e holes of requests released in interval Ii. By
definition iwtm serves the l holes with the highest weight of pending requests
released in Ii. Therefore, hi+1 ≥ (l/dl + T e)ki. Hence, by Equations (1), we
know that

iwtm(σ) ≥ (l/dl + T e)opt(σ).

Recall that l = bT/2c. �
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Fig. 3. Competitive ratio for iwtm for T ∈ [2, 20].

For T ranging from 2 to 20, the values of the competitive ratio of iwtm are
depicted in Figure 3.

5 Extensions to Multiple Servers

In this section we briefly discuss the extension of our results to the case of
k ≥ 1 servers.

For the case of the line it is easy to adopt the lower bound results and prove
that no deterministic algorithm can achieve a constant competitive ratio for
the k-server wham on the line.

We proceed to the uniform metric space. Consider the algorithm k-iwtm is the
k-server extension of iwtm presented in Section 4.2. For a given sequence σ
for the k-server whamT,N , we let σ1, . . . , σk be disjoint subsequences of σ, such
that σi contains all requests served by the ith server in the optimal solution.
We claim that k-iwtm on the sequence σ reaches at least as many moles as
the sum of the (single server) iwtm on sequence σi.

Lemma 14 k-iwtm(σ) ≥
∑

1≤i≤k iwtm(σi).

PROOF. Consider all requests released during an interval Ih in all subse-
quences σ1, . . . , σk. All these requests are considered by k-iwtm during inter-
val Ih+1, and can be served by k-iwtm. As k-iwtm chooses to move to those
requests with heighest weight, it will whack at least as many moles released
in Ih as the sum of the 1-iwtm(σi). �

Theorem 15 k-iwtm is c-competitive for the k-server whamT,N on the uni-

form metric space with c = (bT/2c + T )/bT/2c.
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PROOF. As the optimal algorithm reaches exactly the sum of all requests
reached by the optimal single servers on σ1, . . . , σk, and 1-iwtm is c-competitive,
the theorem immediately follows from the above lemma. �
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