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Clear[α, p, δ, αsol, δsol, R1, R2];

BEAT is an algorithm for instances with uniform upper limit p. We show its competitive ratio is 
bounded by the following function

1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p

2 (-1 + p) p
;

With BEAT, we aim to balance the time testing jobs and the time executing jobs while there are 

untested jobs. A job is called short if its running time is at most E = max {1, p - 1} and long other-
wise. We iterate testing an arbitrary job and then execute the job with smallest processing time 

either, if it is a short job, or if the difference between the total time that long jobs have been tested 

and the total time long jobs have been executed exceeds the job’s processing time. Once all jobs 
have been tested, we execute the remaining jobs in order of non - decreasing processing time.
We are in the case that the uniform upper limit p is at least 2, which means all jobs with processing 

time larger than p -1 are long jobs (E = p - 1 in the notation of the paper). Let α > 0 be the ratio 

between long and short jobs and let 0 ≤ δ ≤ 1 be the fraction of short jobs with processing time p - 1. 
We show in Lemma 9 and 10 that the asymptotic competitive ratio is

ratio =

p + 2 - 1 / p + α^2 p 2 δ - δ^2 + (1 - δ)^2 + 2 α 2 + (1 - 1 / p) (1 + (p - 1) δ) 

p + α^2 (p - 1) δ^2 + 1 + 2 α (1 + (p - 1) δ);

FullSimplify[
ratio]

-1 - 2 α + p 2 + p + α 6 + α + 2 (-1 + p) α (-1 + p + p α) δ - (-1 + p) p α2 δ2 

p p (1 + α δ)2 - α (-1 + δ) 2 + α + α δ

The function ratio is maximal for δ = 0, δ = 1 or where the first derivative is 0, so we distinguish 

these three cases.
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δ = 0; Collect[ratio , α]

2 - 1
p + p + 2 3 - 1

p α + α2

p + 2 α + α2

This is exactly the same expression we had for small p. Thus, this case also yields the same lower 
bound R1 on the asymptotic competitive ratio of the algorithm.



R1 =
1 + 2 -2 + p p + 1 - 2 p2 -3 + 4 p

2 (-1 + p) p
;

Plot[{R1, 2}, {p, 2, 3}, PlotLabels → "Expressions"]
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Clear[δ, α]; δ = 1; Collect[ratio, α]

2 - 1
p + p + 2 2 + 1 - 1

p p α + p α2

p + 2 p α + p α2

We consider the first derivative in α, to show the function is monotonously decreasing for increasing 

α.

FullSimplify[D[ratio, α]]

-
2 (-1 + p + p α)

p2 (1 + α)3

As we have p > 1 and α > 0, both the numerator and the denominator of the function are positive. 
Hence, the first derivative is negative for all feasible values of α and p. This means the function is 
monotonously decreasing for increasing α. It’s maximal value thus is attained for α = 0. This yields a 

second lower bound on the ratio, which we call R2.

α = 0; R2 = FullSimplify[ratio]
Plot[{R2, 2}, {p, 2, 3}, PlotLabels → "Expressions"]
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As the third case we consider the value of δ, for which the first derivative in δ of the ratio function is 
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0.

Clear[α, δ]; δsol = FullSimplify[Solve[D[ratio, δ] ⩵ 0, δ]]

δ →

-(-1 + p) α -1 - 2 α + 2 p (1 + p + α (4 + α)) +√(-1 + p)2 α2 5 + 4 α + 4 p (1 + α) -7 -

4 α + p 11 + p2 (1 + α) + 2 α 6 + α + p (1 + α) -4 + α 2 + α 

2 (-1 + p)2 α2 -1 + p 2 + α, δ → -(-1 + p) α -1 - 2 α + 2 p (1 + p + α (4 + α)) +

√(-1 + p)2 α2 5 + 4 α + 4 p (1 + α) -7 - 4 α + p 11 + p2 (1 + α) + 2 α 6 + α +

p (1 + α) -4 + α 2 + α  2 (-1 + p)2 α2 -1 + p 2 + α

We first show the second solution is not in the feasible interval for δ.

Clear[δ]; δ = δ /. δsol[[2]] ;
Plot3D[{δ, 0}, {α, 0, 100}, {p, 2, 5}, AxesLabel → Automatic]

We check if δ is feasible for the first solution (we need 0 ≤ δ ≤ 1).

Clear[δ]; δ = δ /. δsol[[1]] ;
Plot3D[{δ, 0, 1}, {α, 0, 100}, {p, 2, 5}, AxesLabel → Automatic]

We see the first solution is feasible if the variable α is not too small. Otherwise, there is no extreme 
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point of ratio in the feasible interval for δ, which means one of the previous two cases δ = 0 and δ = 

1 discovered the maximum. Let us consider the competitive ratio for δ at the extreme point.

Plot3D[{ratio, 2}, {α, 0, 100}, {p, 2, 5}, AxesLabel → Automatic]
Plot3D[{ratio, 2}, {α, 0, 100}, {p, 2, 3}, AxesLabel → Automatic]

We observe the competitive ratio increases when α decreases for p between 2 and 3. However, for 
larger p the behavior changes and the competitive ratio even exceeds 2 for p larger 4. We apply the 

algorithm BEAT only for p less than 3, where the competitive ratio increases when α decreases. 
Thus, the adversary chooses the smallest feasible value for α. For this value, we either have δ = 0, 
if this is attained for α > 0. Otherwise, the maximal ratio is attained for the limit of α going to 0. 
However, we observed in the plot above that δ = 0 is always attained for α > 0. Thus, the second 

case never occurs. The first case we have already considered above (δ = 0). Thus we do not get a 

new bound on the ratio for δ being the extreme point.
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We found two bounds on the competitive ratio: R1 and R2. We plot them to show R1 is always 
larger in the interval for p which we consider. Thus R1 is the bound we obtain.
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Plot[{R1, R2, 2}, {p, 2, 5}, PlotLabels → Automatic]
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