Analysis of the algorithm UTE

UTE is an algorithm for instances with uniform upper limit p for all jobs and the additional restriction that
all precessing times are either 0 or p. It is parameterized by some function 5. We show it has competitive
ratio p for such instances.

UTE behaves as follows: If the upper limit p is at most p, all jobs are executed without test. Otherwise, all
jobs are tested. The first max{0, B} fraction of the jobs is executed immediately after its test. The other
jobs are delayed, unless they have size 0.

The parameters 5 and p are

Clear[p, p; B, ¥1;
1-p+p?>-p+2pp-p’p,
b
l1-p+p?-p+pp

pguess = % (1+'\/3+2'\/5 );

The adversary chooses p and a fraction y, such that the last y fraction of the tests of UTE returns process
ing time 0 and all jobs tested before have processing time p.

pguess =

By Proposition 1 we can assume p > p.

Plot[Bguess /. {po - pguess}, {p, 1.5, 4}]
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We observe that S is decreasing in p, until some root, which we call pstar. Also between 1.5 and pstar
the value of 8 does not exceed 1.

sol = Solve[Bguess == 0, p]|

N[sol /. {p~ pguess}]

{{p% 1-2p+ m}, {p% “14+2p+ m}}

2<l—p> 2(—l+,o>

{{p—>0.357644}, {p>2.79608}}

The second root is the one that is relevant for us.
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pstar = p /. sol[[2]];

The sum of completion times of the optimal schedule can be described as :

OPT2 := n"2/2 (y"2 + px (1-¥)"2+2y (1-%));
OPT1 :=n/2 (y +p(1-7));
OPT := OPT2 + OPT1;

We distinguish three cases depending on p and y. By Proposition 1, we only have to consider p = p.

Casep<pstarandg=<1-(
We treat the quadratic part of ALG and OPT separately from the linear part.

Clear[p, ¥, ALG2];
ALG2 :=

nh2/2 ((p+1) B2 +¥y "2 +p (1-B-¥)"2+2(1-y+pB)y +2(1+pB) (1-B-%));
goal2 =2 /n"2 Fullsimplify[p OPT2 - ALG2 ]

-2 - (—2+/3) B+y? - (—2+y) YPo+p (—l+7,( (—2/3+ (—2+7,(> (—l+p>) +p>

The ratio is at most p if goal is non-negative. Hence the adversary tries to minimize goal2 choosing p
and y, while the algorithm wants to maximize it or at least make it non-negative choosing 8 and p.
We show goal2 is convex in y.

Fullsimplify[D[D[goal2, ¥], ¥]]
2 <—l+p) <—l+,o)
Hence, the adversary chooses the extreme point.

sol = Solve[D[goal2, ¥] = 0, ¥]
N[sol /. { p » pguess, p » pguess, B - pfguess /. { p - pguess, p - pguess}}|

HY - <_—pl++pp/)3 _(f) 1t pp) } }

{{y~>0.381966}}

The extreme point y is feasible, so we select it.
y=vy/.sol[[1]];
Fullsimplify[D[D[goal2, 8], B]]

EREETET

Since goal2 is concave in 3, the algorithm would like to choose an extreme point.
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Clear[B];
sol = FullSimplify[Solve[D[goal2, B8] == 0, B]]
N [so'L /. { o> pguess, p - pguess}]

{{B % ll_—pp++pp _((]_.];J[;Ii)p)p }}

{{B—>0.286961}}
This is exactly the value we choose for S.

B=B/.sol[[1]];

goal2 now only depends on p and p. We show that goal2 is increasing in p and in p. We need this
function for goal2 later, so we call it goalsave.

goalsave = FullSimpli fy[goa'lz] H

Plot3D[{goal2, 0}, {p, 1.6, 2}, {p, 1.6, 4}, AxesLabel - Automatic]

Hence, the adversary chooses p = 6. We plot goal2 with this p to show p = p is the right choice.

p = p; Plot[goal2, {p, 1.6, 2}]
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To ensure goal2 is always positive, we need to choose the root of this goal as p.

sol = Solve[goal2 = 0, p]
N [%]

{{o->0.5-0.6066581i}, {0 >0.5+0.6066581i}, {0~ -0.86676}, {0~ 1.86676}}

The forth root is the one relevant to us and it is the value we proposed as pguess.
The linear algorithm cost is

Clear[p, ¥]; ALGL :=n/2 ((p+1)B +¥ +p (1-B-%));
Apart[Fullsimplify[goall =2 /n (o OPT1 - ALG1)], ¥]

-1-p3+p-p?2p+p3p-pp?+p?p?
1-p+p?-p+pp

—<—l+p>7{(—l+p) +

This is decreasing in y, so we set y = 1 - 8 and show that for pguess goal1 is always positive.

¥=1 - B; p=pguess;
Plot[goall, {p, 1.7, 2.8}]
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Case p>pstar
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In this case max{B, 0} = 0 and UTE first tests and postpones the first 1 - y fraction of jobs (all of length p)
and then tests and executes the remaining y fraction (all of length 0). Thus the algorithm cost ALG is

Clear[p, p, ¥1;

ALG := n"2/2 (22 +p (L-¥)"2 +2 (1-¥)¥)+n/2(2(1-%) + ¥ +(p+1) (1-¥));

Apart[goal = Fullsimplify[2 /n (o OPT - ALG)] , p]
—3+2y—2ny+nyz+p<—l+y) (—l—n+ny) (—l+,o)+y,o+2nyp—ny2,o

The ratio is at most p if goal = 0.
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Fullsimplify[D[goal, p]]

(-1+n (-1+v)) (-1+v) (-1+0)

Goal is increasing in p. Hence the worst case instance is realized at p=pstar.

p = pstar;

Fullsimplify[D[D[goal, ¥], ¥]]

n(1+v 340

The goal is convex in y. Hence the adversary will choose the extreme point of goal in y.

sol = So'Lve[D[goa'L, 7] =0, 7]

{{Yﬁ 5+2n++/-3+4p +2n m}}
2n (l+\/—3+4p)

¥ =y /. sol[[1]]; Fullsimplify [goal]

(—11—2;:)+5m+4n (1+n) (-1+p) (l+m))/(4n (1+m))

We show goal is increasing in p and n.

Plot3D[{e, goal}, {p, 1.6, 2}, {n, 1, 100}]

Furthermore, goal is positive for all feasible n and p, thus the ratio is at most pguess also in this case.

Casep<pstarandy>1-8

In this case the algorithm tests and executes the first 1-y fraction of the jobs (of length p). We consider
the linear and the quadratic terms in n separately. For the algorithm cost we have
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Clear([p, ¥, o]}
ALG2 := n"2/2 ((p+1) (1 -¥)"2+y*2+2(p+1)(1-%)¥);
Fullsimplify[goal2 =2 /n"2 FullSimplify[o OPT2 - ALG2]]

-1- (—2+7/) YOo+p (—1+y) (1+Y+ (—1+y) p)
We show the function B is decreasing in p and p.

Plot3D[{®, B, 1}, {0, 1.6, 2}, {p, 1.6, 2.5}, AxesLabel » Automatic]|
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Thus S is always smaller than the value it attains for p = p and p = pguess.

Bmax = Bguess /. {p -» pguess} /. {p » pguess}
2 3 2
(—\/3+2\/§ +%(l+\/3+2\/57) —%(l+\/3+2\/5>) )/ (—\/3+2\/5_ +%(l+\/3+2\/57))

N[%]
0.286961

We set p to the value we promise and show goal2 is decreasing in y.

6
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p = pguess;
Plot3D[{e, goal2}, {¥, 1-N[Bmax], 1}, {p, 1.6, 2.8}, AxesLabel » Automatic]

Thus, we set y = 1 - B to show the goal is always positive.

¥ =1 - N[B]; Plot[goal2, {p, 1.7, 2.8}]
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For the linear terms, we define goal1.

Clear[p, ¥, P13 ALGl=n/2 ((p+1) (1 - ¥) +¥);
Apart[goall = FullSimplify[2/n (o OPT1- ALG1)], ¥]

-l-p+pp-v (-p-p+pp)

The function goal1 is increasing in p, so we plot it for p = p.
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p = pguess; p = p;
Plot[goall, {¥, 1-N[Bmax], 1}]
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This is always positive, as we desired.

Performance for p of the lower bound instance

We take the upper limit p, that yields the general lower bound on deterministic instances and compute
the competitive ratio UTE has for this instance.

Clear[n, p, ¥, p]};
¥ =N [Root [97 -503 #1 + 1029 #12 - 1237 #13 + 566 #1* +
984 #1° - 2521 #1° + 2948 #17 - 2130 #1° + 965 #1° - 250 #1'° + 28 #1'' &, 4]]

1.98962
In this case p is larger than p and smaller than pstar. goalsave is goal for this case.
Fullsimplify[goalsave]

-1-p*+p+(-1+p)®pp+(-1+p)p?
l-p+p (7l+p+p>

goal always has to be positive, so we choose p such that this is zero.

sol = Solve[o == goalsave, p]
N[sol /. {p - ¥}]

{{ -1-p+2p?-p3+ /73+6p73p276p3+10p474p5+p6}
0 — A\l )
2 (-1+p)

{p% l+p-2p%2+p3+ v/—3+6p—3p2—6p3+10p4—4p5+p6 }}
2 (1-p)

{{o—>1.85519}, {p > -4.83465}}

The first solution is the only valid one and it almost matches the lower bound of 1.8546.



