
Analysis of the algorithm UTE
UTE is an algorithm for instances with uniform upper limit p for all jobs and the additional restriction that

all precessing times are either 0 or p. It is parameterized by some function β. We show it has competitive

ratio ρ for such instances.

UTE behaves as follows: If the upper limit p is at most ρ, all jobs are executed without test. Otherwise, all

jobs are tested. The first max{0, β} fraction of the jobs is executed immediately after its test. The other

jobs are delayed, unless they have size 0.

The parameters β and ρ are

Clear[ρ, p, β, γ];

βguess =
1 - p + p2 - ρ + 2 p ρ - p2 ρ

1 - p + p2 - ρ + p ρ
;

ρguess =
1

2
1 + 3 + 2 5 ;

The adversary chooses p and a fraction γ, such that the last γ fraction of the tests of UTE returns process-

ing time 0 and all jobs tested before have processing time p.

By Proposition 1 we can assume p > ρ.

Plotβguess /. {ρ → ρguess}, p, 1.5, 4

2.0 2.5 3.0 3.5 4.0

-0.2

-0.1

0.1

0.2

0.3

0.4

0.5

We observe that β is decreasing in p, until some root, which we call pstar. Also between 1.5 and pstar

the value of β does not exceed 1.

sol = Solveβguess ⩵ 0, p
Nsol /. {ρ → ρguess}

p → 1 - 2 ρ + -3 + 4 ρ
2 1 - ρ , p → -1 + 2 ρ + -3 + 4 ρ

2 -1 + ρ 

p → 0.357644, p → 2.79608
The second root is the one that is relevant for us.

pstar = p /. sol2;

The sum of completion times of the optimal schedule can be described as :

OPT2 := n^2  2 γ^2 + p * 1 - γ^2 + 2 γ 1 - γ;
OPT1 := n  2 γ + p 1 - γ;
OPT := OPT2 + OPT1;

We distinguish three cases depending on p and γ. By Proposition 1, we only have to consider p ≥ ρ.

Case p ≤ pstar and g ≤ 1 - β

We treat the quadratic part of ALG and OPT separately from the linear part.

Clearp, γ, ALG2;
ALG2 :=

n^2  2 p + 1 β^2 + γ ^2 + p 1 - β - γ^2 + 2 1 - γ + p β  γ + 2 1 + p β 1 - β - γ;
goal2 = 2  n^2 FullSimplifyρ OPT2 - ALG2 

-2 - -2 + β β + γ2 - -2 + γ γ ρ + p -1 + γ -2 β + -2 + γ -1 + ρ + ρ
The ratio is at most ρ if goal is non-negative. Hence the adversary tries to minimize goal2 choosing p

and γ, while the algorithm wants to maximize it or at least make it non-negative choosing β and ρ.

We show goal2 is convex in γ.

FullSimplifyDDgoal2, γ, γ

2 -1 + p -1 + ρ
Hence, the adversary chooses the extreme point.

sol = SolveDgoal2, γ ⩵ 0, γ
Nsol /. { ρ → ρguess, p → ρguess, β → βguess /. { ρ → ρguess, p → ρguess}}

γ → -p + p β - ρ + p ρ
-1 + p -1 + ρ

γ → 0.381966
The extreme point γ is feasible, so we select it.

γ = γ /. sol1;
FullSimplifyDDgoal2, β, β

-2 - 2 p2

-1 + p -1 + ρ
Since goal2 is concave in β, the algorithm would like to choose an extreme point.

UTE.nb | 2

Clear[β];
sol = FullSimplifySolveDgoal2, β ⩵ 0, β
Nsol /. { ρ → ρguess, p → ρguess}

β → 1 - p + p2 - -1 + p2 ρ
1 - ρ + p -1 + p + ρ 

β → 0.286961
This is exactly the value we choose for β.

β = β /. sol1;

goal2 now only depends on ρ and p. We show that goal2 is increasing in p and in ρ. We need this

function for goal2 later, so we call it goalsave.

goalsave = FullSimplifygoal2;

Plot3Dgoal2, 0, ρ, 1.6, 2, p, 1.6, 4, AxesLabel → Automatic

Hence, the adversary chooses p = δ. We plot goal2 with this p to show p = ρ is the right choice.

p = ρ; Plotgoal2, ρ, 1.6, 2

1.7 1.8 1.9 2.0

-0.3

-0.2

-0.1

0.1

0.2

3 | UTE.nb

To ensure goal2 is always positive, we need to choose the root of this goal as ρ.

sol = Solvegoal2 ⩵ 0, ρ
N[%]

ρ → 1

2
1 - ⅈ -3 + 2 5 , ρ → 1

2
1 + ⅈ -3 + 2 5 ,

ρ → 1

2
1 - 3 + 2 5 , ρ → 1

2
1 + 3 + 2 5 

ρ → 0.5 - 0.606658 ⅈ, ρ → 0.5 + 0.606658 ⅈ, ρ → -0.86676, ρ → 1.86676
The forth root is the one relevant to us and it is the value we proposed as ρguess.

The linear algorithm cost is

Clear[p, γ]; ALG1 := n  2 p + 1 β + γ + p 1 - β - γ;
ApartFullSimplifygoal1 = 2  n ρ OPT1 - ALG1, γ

--1 + p γ -1 + ρ + -1 - p3 + ρ - p2 ρ + p3 ρ - p ρ2 + p2 ρ2
1 - p + p2 - ρ + p ρ

This is decreasing in γ, so we set γ = 1 - β and show that for ρguess goal1 is always positive.

γ = 1 - β; ρ = ρguess;
Plotgoal1, p, 1.7, 2.8

1.8 2.0 2.2 2.4 2.6 2.8

0.75

0.80

0.85

Case p>pstar

In this case max{β, 0} = 0 and UTE first tests and postpones the first 1 - γ fraction of jobs (all of length p)

and then tests and executes the remaining γ fraction (all of length 0). Thus the algorithm cost ALG is

Clear[ρ, p, γ];
ALG := n^2  2 γ^2 + p 1 - γ^2 + 2 1 - γ γ  + n  2 2 1 - γ + γ +  p + 1 1 - γ ;
Apartgoal = FullSimplify2  n ρ OPT - ALG , p

-3 + 2 γ - 2 n γ + n γ2 + p -1 + γ -1 - n + n γ -1 + ρ + γ ρ + 2 n γ ρ - n γ2 ρ
The ratio is at most ρ if goal ≥ 0.

UTE.nb | 4

FullSimplifyDgoal, p

-1 + n -1 + γ -1 + γ -1 + ρ
Goal is increasing in p. Hence the worst case instance is realized at p=pstar.

p = pstar;

FullSimplifyDDgoal, γ, γ

n 1 + -3 + 4 ρ 

The goal is convex in γ. Hence the adversary will choose the extreme point of goal in γ.

sol = SolveDgoal, γ ⩵ 0, γ

γ → -5 + 2 n + -3 + 4 ρ + 2 n -3 + 4 ρ
2 n 1 + -3 + 4 ρ  

γ = γ /. sol1; FullSimplifygoal

-11 - 2 ρ + 5 -3 + 4 ρ + 4 n 1 + n -1 + ρ 1 + -3 + 4 ρ   4 n 1 + -3 + 4 ρ 

We show goal is increasing in ρ and n.

Plot3D0, goal, ρ, 1.6, 2, n, 1, 100

Furthermore, goal is positive for all feasible n and ρ, thus the ratio is at most ρguess also in this case.

Case p ≤ pstar and γ > 1 - β

In this case the algorithm tests and executes the first 1-γ fraction of the jobs (of length p). We consider

the linear and the quadratic terms in n separately. For the algorithm cost we have

5 | UTE.nb

Clear[p, γ, ρ];
ALG2 := n^2  2 p + 1 1 - γ^2 + γ ^2 + 2 p + 1 1 - γ  γ;
FullSimplifygoal2 = 2  n^2 FullSimplifyρ OPT2 - ALG2

-1 - -2 + γ γ ρ + p -1 + γ 1 + γ + -1 + γ ρ
We show the function β is decreasing in p and ρ.

Plot3D0, β, 1, ρ, 1.6, 2, p, 1.6, 2.5, AxesLabel → Automatic

Thus β is always smaller than the value it attains for p = ρ and ρ = ρguess.

βmax = βguess /. {ρ → ρguess} /. {p → ρguess}

- 3 + 2 5 + 3

4
1 + 3 + 2 5

2

- 1

8
1 + 3 + 2 5

3  - 3 + 2 5 + 1

2
1 + 3 + 2 5

2

N[%]

0.286961

We set ρ to the value we promise and show goal2 is decreasing in γ.

UTE.nb | 6

ρ = ρguess;
Plot3D0, goal2, γ, 1 - N[βmax], 1, p, 1.6, 2.8, AxesLabel → Automatic

Thus, we set γ = 1 - β to show the goal is always positive.

γ = 1 - N[β]; Plotgoal2, p, 1.7, 2.8

1.8 2.0 2.2 2.4 2.6 2.8

0.2

0.4

0.6

0.8

For the linear terms, we define goal1.

Clear[ρ, γ, p]; ALG1 = n  2 p + 1 1 - γ + γ ;
Apartgoal1 = FullSimplify2  n ρ OPT1 - ALG1, γ

-1 - p + p ρ - γ (-p - ρ + p ρ)
The function goal1 is increasing in p, so we plot it for p = ρ.

7 | UTE.nb

ρ = ρguess; p = ρ;
Plotgoal1, γ, 1 - N[βmax], 1

0.75 0.80 0.85 0.90 0.95 1.00

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

This is always positive, as we desired.

Performance for p of the lower bound instance
We take the upper limit p, that yields the general lower bound on deterministic instances and compute

the competitive ratio UTE has for this instance.

Clear[n, p, γ, ρ];
ψ = NRoot97 - 503 #1 + 1029 #12 - 1237 #13 + 566 #14 +

984 #15 - 2521 #16 + 2948 #17 - 2130 #18 + 965 #19 - 250 #110 + 28 #111 &, 4

1.98962

In this case p is larger than ρ and smaller than pstar. goalsave is goal for this case.

FullSimplifygoalsave

-1 - p3 + ρ + -1 + p2 p ρ + -1 + p ρ2
1 - ρ + p -1 + p + ρ

goal always has to be positive, so we choose ρ such that this is zero.

sol = Solve0 ⩵ goalsave, ρ
Nsol /. {p → ψ}

ρ → -1 - p + 2 p2 - p3 + -3 + 6 p - 3 p2 - 6 p3 + 10 p4 - 4 p5 + p6

2 -1 + p ,

ρ → 1 + p - 2 p2 + p3 + -3 + 6 p - 3 p2 - 6 p3 + 10 p4 - 4 p5 + p6

2 1 - p 

ρ → 1.85519, ρ → -4.83465
The first solution is the only valid one and it almost matches the lower bound of 1.8546.

UTE.nb | 8

