Deterministic Lower Bound
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Our lower bound construction considers an instance with uniform upper limit p > 1 and the process-
ing time of every job is either 0 or p. The adversary fixes a fraction 6 € [0,1] and sets the processing
time of a job to p, if and only if the job is tested by the algorithm and among the first 6 fraction of
jobs that is either tested or executed untested.

We assume the algorithm knows p and 6, which can only improve the performance of the best-
possible deterministic algorithm. The schedule of a deterministic algorithm with best possible
competitive ratio has the following form, where A, v 20 and v+ A < §: The algorithm first executes
vn jobs untested, then tests and executes A n long jobs, then tests (6 - v - A) n long jobs and delays
their execution, then tests and executes the remaining (1 - 6) n short jobs, and finally executes the
(6-v-A)ndelayed long jobs that were tested earlier. Thus competitive ratio in the limit for n— oo is

Clear[p, A, 6, v, AsOl, 6sol, sol];
p=(1+26(1-vp)+8> (p-1)+2v (v+p-2)+X2 + 2 (v+p-1-6p))/
(1+(P-1) (6-)7%);

We find the extreme point of the competitive ratio in A.

Asol = Simplify[Solve[D[p, A] == 0, A]]

{{A->1+p (-1+06) -Vv}}

Considering the second derivative, yields that this is a minimum of the ratio, as the result is positive

Simplify[D[D[p, A], Al]
2

1+ (-1+p) (6-v)?2

We check when this minimum is in the feasible region for A.
A=Xx/.2Asol[[1]];

FullSimplify[A < 6 -v, Assumptions » 6 <1 && p 2= GoldenRatio]

True

The condition for A2 01is: Asol=1-p (1- ) - v=0.

We treat this as a condition on u. Thus, this value for A yields the best algorithm cost, when v fulfills
the condition above. We now find the minimum when v violates the condition. We have seen above,
that the first derivative in A is positive, meaning the function increases with A. Thus, the optimal
choice for the other case is A = 0. This splits the analysis of vinto the cases vin[0,1-p(1- 6)) and v

in[1-p(1-0),0].

Casel:ve[0,1-p(1-0))

This case exists if the interval is not empty. This is the case eitherif =1orif1-p (1- 6)>0,i.e.,1-
1/p<é6.
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n7= Reduce[l-p (1-6) >0 && 0<6<1, §]
-1+p
P

our- (p<18&&0=<6=<1) || |p=18&& <6=<1

nier= FUllSimplify[p]
-p? (-1+6)2+p (2+(-2+6)6) - (6-Vv) (-2+6+V)

Out[8]=
1+ (-1+p) (6-Vv)2

niiop= pl = FULlSimplify[p]
-p? (-1+6)2+p (2+(-2+46)6) - (6-v) (-2+6+V)

Oout[10]=
1+ (-1+p) (6-Vv)2
ni111= vsol = FUllSimplify[Solve[D[pl, v] == 0, v]]
1
2 (-1+p) (-1+6)
(L+(-2+p) (-1+p) p+26-2p (2+ (-2+p) p) &+ (-1+p) (2+ (-1+p)p) &+
V(-3+p(2+(-2+p)p) (4+(-3+p) (-1+p) p)+85-4p
(3+(—2+p> p? <3+(—3+p> p>)6+2(—l+p) (2+
(-1+p)p (L+ (-1+p)p (-4+3p))) &°-4(-1+p)*p> &>+ (-1+p)*p*&?))},
{ve = (l+<—2+p) (—l+p)p+26—2p<2+<—2+p) p)6+
2 (=1+p) (-1+6)
(-1+p) (2+ (-1+p)p)&° -/ (-3+p (2+ (-2+p)p) (4+ (-3+p) (-1+p) p) +
865-4p (3+(-2+p)p* (3+(-3+p)p))S6+2(-1+p) (2+
(-1+p)p (L+ (-1+p)p (-4+3p))) -4 (-1+p)*p*> &+ (-1+p)*p*>&*))}}

out[11]= { {v -
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ni2= v=v /. vsol[[1]]}
Plot3D[{6, v, O}, {p, 1.7, 2}, {6, O, 1}, AxesLabel -» Automatic ]
v=v/.vsol[[2]];
Plot3D[{6, v, 1}, {p, 1.7, 2}, {6, O, 1}, AxesLabel » Automatic]
P

1'?'6-%.0

out[13]= 0

Out[15]=
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The second solution for vis infeasible since v> 6.
We consider the second derivative at the point of the first solution for v to check if it is a maximum
or minimum.

nzo= Clear[v]; sndderiv =D[D[pl, v], v];
v=v/.vsol[[1]];
FullSimplify[sndderiv < 0,
Assumptions » 6 <1 & 6 < 1 && p = GoldenRatio && p < 2]

outzzl= True

The second derivative at the first extreme point is negative, which implies that this is a maximum.
Thus, the algorithm would not chose this v and the optimal v must be at the interval borders 0 or 1-
p(1-6). We compute the ratio at the the left border v=0 and take care of the other case below in
Case 2.

)= v =03
pl = FullSimplify[p]
-p2(-1+6)2-(-2+6) 6+p (2+(-2+6) 5)

Out[]=
1+ (-1+p) &2

Case2: v e[l-p(1-6), O]

We show the second case always exists, as p must be larger than 1.
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m-= Reduce[l-p (1-6) <6 && 0 <6 <1, p]
Outf+]= pe[R&&((056<l&&pzl> \|6::1)

n-= Clear[p, 6, v]1; A =0;
FullSimplify[p]
1+ (-1+p)&%+2v (-2+p+v)+6(2-2pv)

Outf#]=
1+ (-1+p) (6-v)2

n-= vsol = Solve[D[p, V] = 0, V]
1

oure- {{v ) (-6+2p-46+4p5+662-8pst+2prol-

2(-4+6p-2p?+46-6p5+2p?o
\/((6—2p+46—4p6—662+8p62—2p262)2—4<—4+6p—2p2+46—6p6+2p26)

(-4+2p-25-2p52+2p252+253-2p53)))},
1

{v

(—6+2p—46+4p6+662—8p62+2p262+
-4+6p-2p2+46-6p5+2p? o)

N
2 (
\/((6—2p+46—4p6—662+8p62—2p262)2—4(—4+6p—2p2+46—6p6+2p26)

(-4+2p-26-2ps?+2p26?+26°-2p6&?))|})

4
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mep=v=v/.vsol[[1]]}
Plot3D[{0, v, 1}, {p, 1.7, 2}, {6, O, 1}, AxesLabel -» Automatic]
v=v/.vsol[[2]];
Plot3D[{0, v, 1}, {p, 1.7, 2}, {6, O, 1}, AxesLabel » Automatic]

Outf#]= -0

Outf#]=

Clearly the first solution is not feasible, as v is negative, so we choose the second solution. We plot
the second derivative to see if it is a minimum or maximum.
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m-= Clear [v];
sol = FullSimplify[D[D[p, V], v1];
v=v/.vsol[[2]];
Plot3D[{sol, 0}, {p, 1.7, 2}, {6, ©, 1}, AxesLabel » Automatic]

The second derivative in v is positive at the extreme point. Thus, it is a minimum and the algorithm
will choose the extreme point for vifit is feasible.
n-= Reduce[v <6 && 0 < 6§< 1 && 1< p<2]

our-l- False

However, the extreme point is never feasible, as we need to ensure v < 6. The function is
monotonously decreasing in v for v < §, as the extreme point is at a larger value of v. Thus, the
optimal choice for the algorithm is v= 6. For all 6 € [0, 1] this yields ve [1-p (1- 0), 8]. We call the
competitive ratio for this case p2.

np= v =683 p2 = FUllSimplify[p]
Plot3D[{p2, 2}, {p, 1.7, 2}, {6, 0, 1}]
ouf-l= 1 - (-1 +p) (—2+6) o)

Out[#]=

2.00
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Bringing both cases together

Infe]:=

Outf#]=

Outf+]=

Inf]:=

Outf]=

Outf]=

For 6<1-1/p thereis only one local minimum. This yields the ratio p2, which is monotonously
increasing in . Thus, the adversary chooses 6 » 1-1/p.

Limit[p2, 6> 1-1/p]
Maximize[{%, 1 <p <2}, p]

1 1
-2 Y e
p p

.
— { 2}
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Otherwise, both pl and p2 are local minima and the algorithm chooses the parameter choice
attaining the minimum of the two options. Thus, either one ratio dominates the other, or the
adversary chooses the range of p and 6 for which they are equal, to maximize the minimum. We
show the latter is the case and compute the value p depending on 6 for which the two ratios are
equal.

Plot3D[{pl1l, p2, 2}, {p, 1.7, 2}, {5, O, 1}, AxesLabel -» Automatic]
psol = FullSimplify[Solve[pl-p2 == 0, p]]

2-454+6%+45%-26%++/6 \[8+(-2+6) 6 (1046 (-3+4 (-2+6) 6))

{{p-- }s

~2+2(-2+6) (-1+6) 6 (1+6)

—2+46—62—463+264+\/g\/8+(—2+6)6<10+6(—3+4<—2+6) 5))

P ~2+2(-2+46) (-1+6) 6 (1+6) )
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- Plot[{p /. psol[[1]1], p /. psol[[2]], 2},
{6, 06, 1}, PlotLabels -» "Expressions", PlotRange - 2]
2

— )
pl.psoll1]
1
Outf+]= L S L
0.6 0.8 1.0
pl.psoll2]
-1
-2
We see the first solution is the only feasible one. We plot the ratio and compute the value 6, for
which it is maximal.
m=p=p /. psol[[1]]; Plot[{o, 2}, {6, @, 1}, PlotLabels » "Expressions"]
2.0:— 2
o}
16] p
outel= |
1.4;
1.2;
‘0i2‘ ‘ ‘0f4‘ ‘ ‘OiG‘ ‘ ‘OiS‘ ‘ ‘1%0

nr= FUllSimplify [p]

~2+(-2+68) 6 (—2+62+\/§\/8+(—2+5>5 (10+6 (-3+4 (-2+6) 5)) )

outf#]=
-2+2(-2+68) (-1+6) 6 (1+6)

= 6sol = FullSimplify[Solve[D[p, 6] = 0]]
N [%]
our)- {{62}, {6 @©-2.07...}, {6> ©o.631. },

{65 @©o0.441..-0.749..i }, {6 > ©0.441...+0.749..i }}

our - {{652.}, {6 -2.06867}, {6 > 0.630665},
{65 0.441156 - 0.748886 1}, {6 > 0.441156 + 0.748886 i} }

Only the third solution is feasible. We show that for this value, the condition p < 1/(1 - 6) is fulfilled.
mjp= 6=6/. 6sol[[3]]; Reduce[p< 1/ (1-6)]

ouf-]= True

= N[p]
our-= 1.85463



