
1

Malleable task-graph scheduling with a practical
speed-up model

Loris Marchal, Bertrand Simon, Oliver Sinnen, and Frédéric Vivien

Abstract—Scientific workloads are often described by Directed Acyclic task Graphs. Indeed, DAGs represent both a theoretical model
and the structure employed by dynamic runtime schedulers to handle HPC applications. A natural problem is then to compute a
makespan-minimizing schedule of a given graph. In this paper, we are motivated by task graphs arising from multifrontal factorizations
of sparse matrices and therefore work under the following practical model. Tasks are malleable (i.e., a single task can be allotted a
time-varying number of processors) and their speedup behaves perfectly up to a first threshold, then speedup increases linearly, but not
perfectly, up to a second threshold where the speedup levels off and remains constant. After proving the NP-hardness of minimizing the
makespan of DAGs under this model, we study several heuristics. We propose model-optimized variants for PROPSCHEDULING, widely
used in linear algebra application scheduling, and FLOWFLEX. GREEDYFILLING is proposed, a novel heuristic designed for our speedup
model, and we demonstrate that PROPSCHEDULING and GREEDYFILLING are 2-approximation algorithms. In the evaluation, employing
synthetic data sets and task graphs arising from multifrontal factorization, the proposed optimized variants and GREEDYFILLING

significantly outperform the traditional algorithms, whereby GREEDYFILLING demonstrates a particular strength for balanced graphs.

Index Terms—Scheduling, task graph, malleable tasks, speedup model, approximation algorithms, proportional mapping

F

1 INTRODUCTION

COMPLEX computations are often described as Directed
Acyclic Graphs (DAGs), where nodes represent com-

putational tasks and edges represent dependences between
these tasks. This formalism is both very common in the
theoretical scheduling literature [1] and sees an increasing
interest in High Performance Computing: to cope with the
complexity and heterogeneity in modern computer design,
many HPC applications are now expressed as task graphs
and rely on dynamic runtime schedulers such as StarPU [2],
KAAPI [3], StarSS [4], and PaRSEC [5] for their execution.
Even the OpenMP standard now includes DAG scheduling
constructs [6].

Task graphs are helpful to express the structure of ap-
plications and to take advantage of the potential parallelism
they express, sometimes called inter-task parallelism. How-
ever, tasks are often coarse grain and each task can be
executed in parallel on several processing cores. To achieve
good performance, we also want to take into account this
intra-task parallelism. There have been a number of studies
to mix both sources of parallelism when scheduling task
graphs, such as [7], [8]. The main difficulty in this context
is to come up with an expressive and yet tractable model
for tasks. Task characteristics are summarized through a
speed-up function that relates the execution time of a task
to the number of processors it is allotted. In the present
paper, we focus on a simple model where the speedup
function is a continuous piecewise linear function, defined
by two thresholds on the processor allotment: before a

• L. Marchal, B. Simon and F. Vivien are with CNRS, INRIA and Univer-
sity of Lyon, LIP, ENS Lyon, 46 allée d’Italie, Lyon, France.
E-mail: {loris.marchal,bertrand.simon,frederic.vivien}@ens-lyon.fr

• O. Sinnen is with Dpt. of Electrical and Computer Engineering, Univer-
sity of Auckland, New Zealand
E-mail: o.sinnen@auckland.ac.nz

first threshold, the speedup is perfect, that is, equal to the
number of processors; between the two thresholds, it is
linear, but not perfect anymore; after the second threshold,
it stalls and stays constant. We later show that this models
well the performance of linear algebra kernels which are our
present concern. This model extends the well-studied simple
single-threshold model, with a perfect speedup before the
threshold, and constant speedup thereafter. This simplified
model has been studied both in theoretical scheduling [9]
and for practical schedulers [10]. Contrarily to most exist-
ing studies, we also assume that tasks are preemptible (a
task may be interrupted and resumed later), malleable (the
number of processors allocated to a task can vary over
time) and we allow fractional allocation of processors. We
claim that this model is reasonable based on the following
two arguments. Firstly, changing the allocation of proces-
sors is easily achieved using the time sharing facilities of
operating system schedulers or hypervisors: actual runtime
schedulers are able to dynamically change the allocation of
a task [11]. Secondly, given preemption and malleability, it is
possible to transform any schedule with fractional allocation
to a schedule with integral allocation using McNaughton’s
wrap-around rule [12] (as shown in Section 3). Hence, we
can consider fractional allocations that are simple to design
and analyze, and then transform them into integral ones
when needed.

The here presented study is motivated and driven by
task graphs coming from sparse linear algebra, and espe-
cially from the factorization of sparse matrices using the
multifrontal method. Liu [13] explains that the compu-
tational dependences and requirements in Cholesky and
LU factorization of sparse matrices using the multifrontal
method can be modeled as a task tree, called the assembly
tree. Our targets are therefore such trees and the experi-
mental evaluation will focus on them. Having that said,

2

the proposed algorithms in this paper are not limited to
trees, but apply to series-parallel graphs (SP-graphs) or
sometimes to general DAGs. We will describe and analyze
them correspondingly for the sake of generality.

The contributions of this paper are as follows. We pro-
pose a practical piecewise linear speedup model which is
divided into three parts. Up to a first threshold the speedup
is perfect, equalling the number of processors. Then it grows
linearly, but with a slope < 1 until a second threshold is
reached, after which the speedup remains constant. Using
such a piecewise linear function to describe the speedup
seems a straightforward approximation. Our objective is to
demonstrate that such a model is useful to create better
schedules, in particular for proving approximation results
and for designing novel, more efficient, scheduling heuris-
tics. Section 3 details the model and Section 4 experimentally
validates it, demonstrating its ability to more closely follow
speedup curves typical for linear algebra kernels. For this
model, we show the NP-completeness of the decision prob-
lem associated with the minimization of the makespan for
a given graph (Section 5). We study previously proposed
algorithms PROPMAPPING (Proportional Mapping) which
is commonly used by runtime schedulers, and FLOWFLEX
and propose model-optimised variants of these algorithms.
Further, the novel GREEDYFILLING is proposed, designed
for the new speedup model (Section 6). Both, GREEDYFILL-
ING and PROPMAPPING are shown to be 2-approximation
algorithms. In Section 7 we perform simulations both on
synthetic series-parallel graphs and on real task trees from
linear algebra applications demonstrating the general supe-
riority of the new GREEDYFILLING and the model-optimised
variants of the traditional algorithms.

2 RELATED WORK

In this section, we thoroughly review the related work on
malleable task graph scheduling for models of tasks that are
close or similar to our model. We also present some basic
results on series-parallel graphs.

2.1 Models of parallel tasks

The literature contains numerous models for “parallel
tasks”; names and notations vary and their usage is not
always consistent. The simplest model for parallel tasks is
the model of rigid tasks, sometimes simply called parallel
tasks [14]. A rigid task must always be executed on the
same number of processors (that must be simultaneously
available). In the model of moldable tasks, the scheduler
has the freedom to chose on which number of processors
to run a task, but this number cannot change during the
execution. This model is sometimes called multiprocessor
tasks [15]. The most general model is that of malleable tasks:
the number of processors executing a task can change in
any way at any time throughout the task execution. How-
ever, numerous articles use the name malleable to denote
moldable tasks like, for instance, [14], [16], [17]. Depending
on the variants, moldable and malleable tasks can run on
any number of processors, from 1 to p, or each task Ti
may have a maximum parallelism which is often denoted
by δi [15]. Furthermore, depending on the assumptions,

tasks may be preempted to be restarted later on the same
set of processors, or on a potentially different one (pre-
emption+migration). It should be noted that the model of
malleable tasks is a generalization of the model of moldable
tasks with preemption and migration.

An important feature of the models for moldable and
malleable tasks is the task speed-up functions that relate
a task execution time to the number of processors it uses.
Some authors, like Hunold [18], do not make any as-
sumption on the speed-up functions. More commonly, it is
assumed that the task execution time is a non-increasing
function of the number of processors [16], [18], [19], [20].
Another classical assumption is that the work is a non-
decreasing function [16], [18], [20] —the work is the prod-
uct of the execution time and of the number of proces-
sors used— which defines the model sometimes called
monotonous penalty assumptions. Some other works consider
that the speed-up function is a concave function [19]. Several
of the models considered in the literature satisfy all above
assumptions: non-decreasing concave speed-up function
and non-decreasing work. This is for instance the case with
the model studied by Prasanna and Musicus [21] where the
processing time pi of task i is pi(k) = pi

kα with α being a
task-independent constant between 0 and 1 and k the num-
ber of allotted processors [21], [22]. Another instance is the
simple single-threshold model, that is, the linear model [9],
[10], [23], [24], [25]: pi(k) = pi

k . Havill and Mao [26] added to
that model an overhead affine in the number of processors
used: pi(k) = pi

k +(k−1)c. This model is also closely related

to the Amdahl’s law where pi(k) =
p
(p)
i

k +p
(s)
i . Amdahl’s law

is considered in the experimental evaluation of [20].
Finally, the number of processors alloted to a task can,

depending on the assumptions, either only take integer
values, or can also take fractional ones [19], [21], [22].

2.2 Results for moldable tasks
Du and Leung [27] have shown that the problem of schedul-
ing moldable tasks with preemption and arbitrary speed-up
functions is NP-hard.

In the scope of the monotonous penalty model, Lep-
ère, Trystram, and Woeginger [16] presented a 3 +

√
5 ≈

5.23606 approximation algorithm for general DAGs, and a
3+
√

5
2 + ε ≈ 2.61803 + ε approximation algorithm for series-

parallel graphs and DAGs of bounded width.
Wang and Cheng presented [24] a 3 − 2

p -approximation
algorithm to minimize the makespan while scheduling
moldable task graphs with linear speed-up and maximum
parallelism δj (problem P |prec, any , spdp-lin, δj |Cmax).

Havill and Mao [26] consider the problem of scheduling
independent moldable jobs in an online setting, with arbi-
trary arrival times (note that they use the term malleable).
In the model where the processing time is described by
pi(k) = pi

k + (k − 1)c, they propose a simple yet efficient
algorithm which is in particular a 4-approximation for large
k. An improved algorithm has then been proposed by Kell
and Havill [28] for a small number of processors.

2.3 Results for malleable tasks
The problem of scheduling independent malleable tasks
with linear speedups, maximum parallelism per task, and

3

with integer allotments, that is P |var , spdp-lin, δj |Cmax,
can be solved in polynomial time [9], [29] using a
generalization of McNaughton’s wrap-around rule [12].
Drozdowski and Kubiak showed in [9] that this prob-
lem becomes NP-hard when dependences are introduced:
P |prec, var , spdp-lin, δj |Cmax is NP-hard. Balmin et al. [10]
present a 2-approximation algorithm for this problem. Their
algorithm builds integral allotments by first scheduling the
DAG on an infinite number of processors and then using
the optimal algorithm for independent tasks to build an
integral-allotment schedule for each interval of the previous
schedule during which a constant number of processors
greater than p was used. In this paper we extend this result
with Corollary 2, showing that this algorithm is also a
2 − δmin

p approximation for makespan minimization with
fractional allotments (where δmin is the minimum threshold
over all tasks).

Makarychev and Panigrahi [19] consider the problem
P |prec, var |Cmax under the monotonous penalty assump-
tion and when allotments are rational. They provide a
(2 + ε)-approximation algorithm, of unspecified complexity
(their algorithm relies on the resolution of a rational linear
program; this linear program is not explicitly given). Fur-
thermore, they prove that there is no “online algorithm with
sub-polynomial competitive ratio” (an online algorithm is
an algorithm that considers tasks in the order of their
arrival).

Carroll and Grosu [30] study the problem of schedul-
ing independent malleable tasks in an online setting, with
arbitrary arrival times and deadlines. They use the same
processing time as Havill and Mao [26], and each task comes
with a value. They propose an incentive strategy to maxi-
mize the sum of the values of the tasks completed before
their deadline, hence rational users truthfully declares his
parameters.

2.4 Series-parallel graphs

Series-parallel graphs can be recognized and decomposed
into a tree of series and parallel combinations in lin-
ear time [31]. It is well-known that series-parallel graphs
capture the structure of many real-world scientific work-
flows [32]. A possible way to extend algorithms designed for
series-parallel graphs to general graphs is to first transform
a graph into a series-parallel graph, using a process some-
times called SPization [33] before applying a specialized
algorithm for SP-graphs. This was for example done in [34].
However, note that no SPization algorithm guarantees that
the length of the critical path is increased by only a constant
ratio.

3 APPLICATION MODEL

We consider a workflow of tasks whose precedence con-
straints are represented by a task graph G = (V,E) of
n nodes, or tasks: a task can only be executed after the
termination of all its predecessors. We assume that G is
a series-parallel graph. Such graphs are built recursively as
series or parallel composition of two or more smaller SP-
graphs, and the base case is a single task. Trees can be
seen as a special-case of series-parallel graphs. A tree can

δ
(1)
i δ

(2)
i

δ
(1)
i

Ωi

nb. of processors p

speedup si(p)

Figure 1: Illustration of the proposed speedup model and its
notations.

be turned into an SP-graph by simply adding one dummy
task without computation cost, that has an edge with every
leaf of the tree.

Each task Ti ∈ V is associated with a weight wi that
corresponds to the work that needs to be done to complete
the task. By extension, the weight of a subgraph of G is
the sum of the weights of the tasks it is composed of. The
start time ti of a task Ti is defined as the time when the
processing of its work starts for the first time. Denoted
by p is the total number of identical processors available
to schedule G. Tasks are assumed to be preemptible and
malleable; each task Ti may be allocated a fractional, time-
varying amount pi(t) of processors at time t. The speedup
of each task, illustrated in Figure 1, is a piecewise linear
function of the number of processors allocated to the task.
Task Ti is associated with two integer thresholds, δ(1)

i and
δ

(2)
i , on the number of processors and a maximum speedup

Ωi, which define the speed-up of the task:
• for a number of processors smaller than, or equal to, the

first threshold, the task is perfectly parallel;
• for a number of processors larger than the second

threshold, the speedup is bounded by the maximum
speedup;

• between the two thresholds, the speedup is linear but
not perfect.

Formally, the speedup function is a continuous piecewise
linear function defined as

si(p) =

p if p ≤ δ(1)
i

δ
(1)
i +

(p−δ(1)i)(Ωi−δ(1)i)

δ
(2)
i −δ

(1)
i

if δ(1)
i ≤ p ≤ δ(2)

i

Ωi if p ≥ δ(2)
i

(1)

The completion or finish time of task Ti is thus defined
as the smallest value fi such that

∫ fi

0
si(pi(t))dt = wi.

The objective is to minimize the makespan of the application,
that is the latest task finish time.

Model variants. The objective of the proposed three-
phase model with two thresholds is to accurately match
the memory hierarchy: the closer the processors, the faster
they can communicate. In the following, we also use a
simpler variant of our model with only two phase: when
both thresholds are equal (δ(1)

i = δ
(2)
i) we necessarily get

Ωi = δ
(1)
i and we get back to a capped perfect threshold.

The problem of minimizing the makespan of a graph with

4

this model is noted P |prec, var , frac, spdp-lin, δj |Cmax and
is studied in [9], [10].

Some of the algorithms presented in this paper also ap-
ply to some restricted variants of the problem. A notable one
is the case of moldable tasks, which prohibits any variation in
the set of processors used by a task: in this case, pi(t) must
be constant on some time interval, and null elsewhere.

Other notations. In the following, we will often use the
length of the critical path of a task Ti, which is defined as the
minimum time needed to complete all the tasks on any path
from this task to any output task of the graph, provided
that an unlimited number of processors is available. This
corresponds to the classical notion of bottom-level [35],
when the duration of each task is set to wi/Ωi. By extension,
the critical path of the entire graph G is the longest critical
path of all its tasks.

3.1 Extension of McNaughton wrap-around rule
When scheduling tasks with perfect speedup, it is possible
to remove the assumption of fractional allocation without
degrading the makespan thanks to malleability, using the
so-called “Macnaughton wrap-around rule” [12]. We adapt
here this result to our model with two integer thresholds.
For the sake of simplicity, the proof is presented only for
two tasks but easily extends to any allocation.

Lemma 1. Consider two tasks A and B sharing an integer
number of processors p on a given interval M : A (resp. B) is
allocated a fractional number of processors pA (resp. pB). We can
produce a schedule with preemption where A and B are allocated
integer numbers of processors at all times, and in which both tasks
perform the same amount of work.

Proof. We build a schedule where bpAc (resp. dpBe) proces-
sors are allocated to task A (resp. B) during t units of time,
and dpAe (resp. bpBc) during M−t units of time. t is chosen
such that the area dedicated to task A is the same as in the
original allocation, which means:

M dpAe − t = MpA

so t = M(dpAe − pA). The same holds correspondingly for
task B. This ensures that we can apply this transformation
to both tasks without exceeding the processor limit.

Now, we want to prove that in the new allocation, A
performs the same amount of work (and correspondingly
for B). We denote by s(·) the speedup function of task A.
The work done on task A is given by:

t× s(bpAc) + (M − t)× s(dpAe)
= M × s(dpAe)− t(s(dpAe)− s(bpAc))

= M

(
s(dpAe)−

dpAe − pA
dpAe − bpAc

(s(dpAe)− s(bpAc))
)

We know that

dpAe − pA
dpAe − bpAc

=
s(dpAe)− s(pA)

s(dpAe)− s(bpAc)
because s is linear between dpAe and bpAc, as the thresh-

olds are integer. Finally, we get:

t× s(bpAc) + (M − t)× s(dpAe) = M × s(pA)

which completes the proof.

Note that this may add a number of preemptions pro-
portional to the number of tasks for each interval.

4 EXPERIMENTAL VALIDATION OF THE MODEL

In this section, we show that the proposed model is realistic
enough to model parallel tasks coming from an actual ap-
plication. In order to do this, we ran such tasks on a parallel
platform of 24 cores. It consists of two Haswell Intel Xeon
E5-2680 processors, each one containing 12 cores running at
3.30 GHz, and embeds 128 GB of DDR4 RAM (2133MHz).

To compute the speedup graph as shown in Figure 1,
we ran each task with p = 1, . . . , 24 cores. Note that
on this platform, the “number of processors” has to be
understood as “number of cores”. We first tested a dense
numerical algebra routine: the dense Cholesky factorization.
We noticed that the speedup of such dense tasks was perfect,
i.e., equal to the number of cores used, up to using the full
platform (p = 24). However, usual parallel applications are
not made (only) of tasks with perfect parallelism, and our
model precisely aims at taking these speedup limitations
into account. Thus, we focused on another linear algebra
application, which is the multifrontal QR decomposition of
sparse matrices as performed by QR_MUMPS [36]. Each task
of this application is the QR decomposition of a dense rect-
angular matrix. For the set of matrices described in Section 7,
we computed the size of all the dense QR decompositions
associated to its multifrontal QR decomposition. For each
of the ten thousand resulting sizes, we timed such a task
on p = 1, . . . , 24 cores. Each timing was performed 5 times
using random data and we retain the average performance.

In the following, we present the speedup of three tasks
which are representative of all possible sizes. The first case,
presented in Figure 2a, corresponds to small matrix sizes.
The green dots represent the actual speedup measured on
the platform. Note that for up to 10 processors, the speedup
increases with the number of processors and then the perfor-
mance decreases and exhibits a larger variability for larger
number of processors: when adding too many processors,
more time is spent in communicating and synchronizing the
processors, which hinders the performance. This behaviour
is not unusual; a “smart” implementation of the task would
be aware of this and would limit the number of processors
to be used to 10, even if more processors are allocated to
the task. Thus, we first transform the measured speedup so
that it is never decreasing with the number of processors.
Formally, this corrected speedup, plotted with blue dots on
the figures, is given by:

correctedSpeedup(p) = max
k≤p

measuredSpeedup(k)

In order to fit our speedup model to this corrected speedup,
we computed the values of the parameters (δ(1), δ(2), Ω) that
minimize the sum of the squares of the distance between
the model and the corrected measurements for all p values
between 1 and 24. Given the limited range of possible values
for the thresholds (which are integers in {1, 2, . . . , 24}) and
maximum speedup (in [1; 24]), we decided to simply test all
possible values of the parameters (with fixed precision for
the maximum speedup) and select the ones that minimize

5

0 5 10 15 20 25

2

4

6

Processors

Sp
ee

du
p

(a) Matrix size 1984x1834

0 5 10 15 20 25

2

4

6

8

Processors

Sp
ee

du
p

(b) Matrix size 1072x22385

0 5 10 15 20 25

0

5

10

15

20

Processors

Sp
ee

du
p

(c) Matrix size 13007x15575

Figure 2: Speedup and fitted model for different matrix sizes

the sum of residuals. The resulting speedup model is plotted
in red.

Figures 2b and 2c plots the same measured speedup,
corrected speedup and fitted model for larger matrices: a
medium-size matrix on Figure 2b with one large dimension
and one small, and a large matrix on Figure 2c. As expected,
we notice that the thresholds increase with the matrix size.
For the larger matrices, the second threshold is set to 24
although it would probably be larger on a larger platform.
Overall, we notice that the fitting of the model is very ac-
curate, the median coefficient of determination being larger
than 0.98 (a value of 1 means a perfect fit).

0 5 10 15 20 25

2

4

6

Processors

Sp
ee

du
p

Figure 3: Speedup and single-threshold model for matrix
size 1984x1834.

Some of the available algorithms for solving our prob-
lem consider the single-threshold variant presented in the
previous section. Thus, we also fitted the previous (cor-
rected) speedup measurements with this model, composed
of a first perfect linear speedup and then a plateau where
the speedup is equal to the threshold. Figure 3 plots the
obtained speedup model using the same matrix size as
Figure 2a. We see that this model is less accurate, the median
coefficient of determination being 0.90: it is too optimistic
before the threshold, as the task is not perfectly parallel, and
it is too pessimistic after the threshold, as better performance
can be reached with a number of cores larger than the
threshold.

5 PROBLEM COMPLEXITY

Task malleability and perfect speed-up make this problem
much easier than most scheduling problems. However,
quite surprisingly, limiting the possible parallelism with
thresholds is sufficient to make it NP-hard. We restrict
ourselves here to the model where both thresholds are equal
(δi = δ

(1)
i = δ

(2)
i = Ωi for all tasks i) as it is already

NP-hard. Note that a similar result already appeared in [9],
however its proof is more complex and not totally specified,
which makes it difficult to check; this is why we propose
this new proof.

Theorem 1. The decision version of the problem of minimizing
the makespan is NP-complete.

Proof. We start by proving that this problem belongs to NP.
Without loss of generality, we restrict to schedules which
allocate a constant share of processors to each task between
any two task completions. Note that from a schedule that
does not respect this condition, we can construct a schedule
with the same completion times simply by allocating the av-
erage share of processors to each task in each such interval.
Given a schedule that respects this restriction, it is easy to
check that it is valid in time polynomial in the number of
tasks.

To prove completeness, we perform a reduction from the
3SAT problem which is known to be NP-complete [37]. An
instance I of this problem consists of a boolean formula,
namely a conjunction of m disjunctive clauses, C1, . . . , Cm,
of 3 literals each. A literal may either be one of the n
variables x1 . . . xn or the negation of a variable. We are
looking for an assignment of the variables which leads to
a TRUE evaluation of the formula.

Instance definition: From I , we construct an instance
J of our problem. This instance is made of 2n+ 1 chains of
tasks and p = 3 processors. The first 2n chains correspond to
all possible literals of instance I ; they are denoted Lxi or Lxi
and called literal chains. The last chain is intended to mimic
a variable “processor profile”, that is a varying number of
available processors over time for the other chains, and is
denoted by Lpro. Our objective is that for every pair of literal
chains (Lxi and Lxi), one of them starts at some time ti =
2(i− 1) and the other at time ti+ 1. The one starting at time
ti + 1 will have the meaning of TRUE. We will construct
the chains such that (i) no two chains of the same pair can

6

start both at time ti + 1 and (ii) at least one chain Lxi or Lxi
corresponding to one of the three literals of any given clause
starts at time ti + 1.

For any chain, we consider its critical path length, that
is, the minimum time needed to process it provided that
enough processors are available. The makespan bound M
of instance J is equal to the critical path length of the last
chain Lpro, and will be specified later. Thus, to reach M , all
tasks of Lpro must be allocated their threshold, and no idle
time may be inserted between them.

In constructing the chains, we only use tasks whose
weight is equal to their threshold, so that their minimum
computing time is one. Then, a chain is defined by a list
of numbers [a1, a2, . . .]: the i-th task of the chain has a
threshold and a weight ai. As a result, the critical path
length of a chain is exactly the number of tasks it contains.
We define ε = 1/4n and present the general shape of a
literal chain La, where a is either xi or xi:

La = [1, ε, ε, . . . , ε︸ ︷︷ ︸
2(n−i)

,SelectClause(a)︸ ︷︷ ︸
2m tasks

, ε, . . . , ε︸ ︷︷ ︸
2(n−i)

, 1]

The leftmost and rightmost parts of the chain are dedicated
to ensuring that in each pair of literal chains, one of them
starts at time ti = 2(i− 1) and the other at time ti + 1. The
central part of the chain is devoted to clauses, and ensures
that for each clause, at least one chain corresponding to a
literal of the clause starts at time ti + 1:

SelectClause(a) = [InClause(C1, a),ε, . . . ,

InClause(Cm, a), ε]

where:

InClause(Ck, a) =

{
[1− 2

3nε] if a appears in Ck
[ε] otherwise

In total, the chain La includes 4n + 2m − 4i + 3 tasks.
Finally, the profile chain is defined as follows:

Lpro =[2, 2− ε, . . . , 2− (2n− 1)ε︸ ︷︷ ︸
2n tasks

,

L10, L10, . . . , L10︸ ︷︷ ︸
2m tasks

, 2− (2n− 1)ε, . . . , 2− ε, 2︸ ︷︷ ︸
2n tasks

]

where L10 = [1− (2
3n− 2)ε, 3ε]. The critical path length

of Lpro defines M = 2m + 4n. Figure 4 presents a valid
schedule for the instance corresponding to the formula (x1∨
x2 ∨ x2), which corresponds to the assignment {x1 = x2 =
FALSE}.

From a truth assignment to a valid schedule: We
assume here that we are given a solution to I , i.e. a
truth assignment of its variables: let vi denote the value of
variable xi in this assignment. We construct the following
schedule for J : for all chains, each task is allocated a
number of processors equal to its threshold and no idle
time is inserted between any two consecutive tasks. Chain
Lpro starts at time 0 while chain Lxi (respectively Lxi)
starts at time ti + 1 if vi is TRUE (resp. FALSE), otherwise
it starts at time ti. It is straightforward to check that this
schedule is valid. Here, we only concentrate on the most
critical part, namely the central part which corresponds to

time

processor usage

Lpro

Lx1

Lx1

Lx2

Lx2

t1 = 0 t2 M − t2 M − t1

Figure 4: Example of a possible schedule for the instance J
associated to the formula x1 ∨ x2 ∨ x̄2.

the clauses. We count the number of processors used during
time interval [2n+ 2(k − 1), 2n+ 2k] which corresponds to
clause Ck:
• In the first half of this interval, at most 2 literal chains

can have a task of size 1 − 2
3nε since at least one in

the three literals of the clause is true. Together with
the other literal chains and the profile, the maximum
processor occupancy is at most (remember ε = 1/4n):

2

(
1− 2

3
nε

)

︸ ︷︷ ︸
FALSE literal chains

+ (2n− 2)ε︸ ︷︷ ︸
other literal chains

+ 1−
(

2

3
n− 2

)
ε

︸ ︷︷ ︸
Lpro

= 3.

(This is maximum, because 1− 2
3nε > ε.)

• In the second half of this interval, at most 3 literal chains
can have a task of size (1− 2

3nε), which may result in a
maximum number of busy processors of:

3

(
1− 2

3
nε

)

︸ ︷︷ ︸
TRUE literal chains

+ (2n− 3)ε︸ ︷︷ ︸
other literal chains

+ 3ε︸︷︷︸
Lpro

= 3.

The resulting schedule has a makespan of M and is thus a
solution to J .

From a valid schedule to a truth assignment: We
now assume that instance J has a valid schedule S and
we aim at reconstructing a solution for I . First we prove
some properties on the starting times of chains through the
following lemma. The proof of this lemma has been moved
to the web supplementary material.

Lemma 2. In any valid schedule S for J ,
i) each pair of chains Lxi , Lxi is completely processed during

time interval [ti,M − ti],
ii) one of them is started at time ti and the other one at time

ti + 1,
iii) all tasks of both chains are allocated their threshold,
iv) there is no idle time between any two consecutive tasks of

each chain.

For each literal chain which starts at time ti + 1, we
associate the value TRUE in an assignment of the variables
of I , and we associate the value FALSE to all other literals.
Thanks to the previous lemma, we know that exactly one
literal in the pair (xi, xi) is assigned to TRUE. Furthermore,
not three tasks of size 1 − 2

3nε can be scheduled at time

7

Algorithm 1: PROPMAPPING (G = (V,E,w), p)

1 if top-level composition is series composition of K
sub-graphs then

2 Allocate pk = p processors to each subgraph

3 else top-level composition is parallel composition of
K sub-graphs G1, ..., GK

4 Allocate pk =
wGk∑
j wGj

p processors to subgraph Gk,
1 ≤ k ≤ K , where wGk is weight of Gk

5 Call PROPMAPPING (sub-graph k, pk) for each
sub-graph k

2n+2(k−1) because of the profile chain Lpro, as this would
lead to a number of occupied processors of:

3

(
1− 2

3
nε

)

︸ ︷︷ ︸
3 FALSE literal chains

+ (2n− 3) ε︸ ︷︷ ︸
other literal chains

+ 1−
(

2

3
n− 3

)
ε

︸ ︷︷ ︸
Lpro

= 4− 2

3
nε = 4− 1

6
> 3 = p.

Thus, at least one literal of each clause is set to TRUE in our
assignment. This proves that it is a solution to I .

6 HEURISTICS DESCRIPTION AND COMPETITIVE
ANALYSIS

We now move to the description and analysis of
three heuristics. Two of them come from the literature
(PROPMAPPING and FLOWFLEX) while a third one, called
GREEDYFILLING is novel. For both pre-existing heuristics,
we present their original version as well as some optimiza-
tions for our model.

6.1 Performance analysis of proportional mapping
A widely used algorithm for this problem is “proportional
mapping” [38]. In this algorithm, a sub-graph is allocated a
number of processors that is proportional to the ratio of its
weight to the sum of the weights of all sub-graphs under
consideration. Based on the structure of the considered
SP-graph G, Algorithm 1 allocates a share of processors
to each sub-graph and eventually each task. Any given
graph G (with SP-graph characteristics) can be decomposed
into its series and parallel components using an algorithm
from [31], and thus be processed by Algorithm 1. Observe
that thresholds are not considered in this proportional map-
ping.

The schedule corresponding to this proportional map-
ping simply starts each task as soon as possible (i.e., after all
its predecessors have completed), as given in Algorithm 2.
Indeed, given the proportional mapping of processors, there
are always enough processors available to do that. It is
worth noting that the created schedule is compatible with
the moldable model: each task uses the same number of
processors throughout its entire execution. As such, Algo-
rithm 2 can also be used for the moldable model.

In the case of perfect parallelism (i.e., δ(1)
i ≥ p, ∀Ti ∈ G),

there is no idle time as all tasks of a parallel composition
terminate at exactly the same time (due to the propor-
tional mapping). Hence, this schedule achieves the optimal

Algorithm 2: PROPSCHEDULING (G = (V,E,w, p)

1 Call PROPMAPPING (G, p) to determine pi for each
task Ti ∈ V

2 foreach Ti ∈ V do
3 Start Ti with pi processors as soon as possible, i.e.,

after all its predecessors completed

makespan M∞ =
∑
i∈V wi
p . For the general case the follow-

ing theorem holds.

Theorem 2. PROPSCHEDULING is a (1 + r)-approximation

algorithm for makespan minimization where r = maxi
δ
(2)
i

Ωi

Proof. We first note that the optimal makespan when all
tasks have perfect parallelism, M∞, is a lower bound on
the optimal makespan with thresholds MOPT. We have
thus M∞ ≤ MOPT ≤ M and we want to show that
M ≤ (1 + r)MOPT.

The critical path cp of G, as defined in Section 3, is a
longest path in G, where the length is defined as the sum of
the work of each task on the path divided by its maximum
speedup, len(cp) =

∑
i∈cp

wi
Ωi

. Naturally, the critical path
length is another lower bound on the optimal makespan,
len(cp) ≤MOPT.

Consider the schedule produced by PROPSCHEDULING.
There is at least one path Φ in G from the entry task to
the exit task, with no idle time between consecutive tasks.
In other words, on Φ the execution of a task starts when
the execution of the preceding task finishes. Such a path
always exists because we start tasks as early as possible,
so this property is always true between the tasks of a
serial composition, and it is true for at least one task in
each parallel composition. The execution length of Φ is the
makespan M , because it includes no idle time and that it
goes from entry to exit task. It is given by

M =
∑

i∈Φ

wi

si(min{pi, δ(2)
i })

Let us divide the tasks of Φ into two sets: the set A of
tasks executed with their threshold processors pi = δ

(2)
i and

the set B of tasks executed with the allocated number of
processors pi < δ

(2)
i , with A ∪B = Φ. We then have

M =
∑

i∈A

wi

si(δ
(2)
i)

+
∑

i∈B

wi
si(pi)

=
∑

i∈A

wi
Ωi

+
∑

i∈B

wi
si(pi)

The first term (called MA) is per definition smaller than or
equal to the length of the critical path len(cp). The second
term (MB) consists only of tasks that are executed with their
proportionally allocated processors. Therefore, these tasks
are allocated as many processors as in the schedule achiev-
ing the optimal makespan M∞ when ignoring thresholds.
This means that

M∞ ≥
∑

i∈B

wi
pi

=
∑

i∈B

wi
si(pi)

si(pi)

pi
≥ min

i∈B

(
si(pi)

pi

)
MB

With the definition of the si’s given in Equation (1), we
know that functions x 7→ si(x)

x are non-increasing, so
mini∈B

(
si(pi)
pi

)
≥ 1

r . Therefore,

rM∞ ≥MB

8

We then get the desired inequality:

M ≤ len(cp) + rM∞ ≤ (1 + r)MOPT.

The complexity of PROPSCHEDULING is O(|V |), as it
consists of a simple traversal of the SP-graph.

6.2 Optimizations of proportional mapping

The main drawback of PROPMAPPING is that it assumes
perfect speedup. When applied to actual tasks with imper-
fect speedup functions, some tasks may finish later than
expected by the algorithm. In some cases, sibling tasks (tasks
that share the same successor) may complete earlier, thus
leaving some processors idle, which induces performance
loss. In order to address this issue, a natural idea is to
redistribute the processors left idle by the termination of
some task Ti to Ti’s siblings, that is, to the tasks that share
the same successor Tj and are still running. This is for
example what is done in [39]. We design such an algorithm,
called PROPMAPREBALSIBLINGS, which redistributes the
processing power of terminated tasks to their siblings, pro-
portionally to the weight of the target tasks.

Note that both the original PROPMAPPING or this op-
timization are agnostic of both thresholds. Thus, we intro-
duce a new variant of PROPMAPPING called PROPMAPRE-
BALTHRESHOLD that takes advantage of the speedup model
introduced above. It also consists of redistributing proces-
sors left idle when a task terminates while its successor is
not ready yet. The main difference with the previous variant
is that idle processors are not redistributed only to siblings,
but to all currently running tasks for which pi < δ

(2)
i .

Again, the redistribution is done according to the weight
of the tasks. Both variants are detailed in Algorithm 3 and
Algorithm 4, and have a complexity of O(|V |2).

Algorithm 3: PROPMAPREBALSIBLINGS (G =
(V,E,w), p)
1 Call PROPMAPPING (G, p) to determine pi for each task
Ti ∈ G

2 FreeTasks ← source tasks
3 while FreeTasks 6= ∅ do
4 t← time when the first task Tn ∈ FreeTasks is

completed using pn processors
5 foreach task Ti ∈ FreeTasks do
6 allocate pi processors to Ti until time t

7 FreeTasks ← FreeTasks \ {Tn}
8 foreach task Ti ∈ FreeTasks siblings of Tn do
9 pi ← pi + share of pn proportional to the weight

of Ti

10 foreach T ′ ∈ successors(Tn) such that T ′ has no
unprocessed predecessors do

11 FreeTasks ← FreeTasks ∪ {T ′}

6.3 A novel algorithm: Greedy-Filling

Proportional mapping is a common approach. However, it
does not make use of the malleability of tasks and it is re-
stricted to SP-graphs. In this section we study an algorithm,
called GREEDYFILLING, which may schedule any DAG and
takes advantage of the tasks’ malleability. It considers one

Algorithm 4: PROPMAPREBALTHRESHOLD (G =
(V,E,w, δ(2)), p,)
1 Call PROPMAPPING (G, p) to determine pi for each task
Ti ∈ G

2 FreeTasks ← source tasks
3 while FreeTasks 6= ∅ do
4 foreach task i ∈ FreeTasks do Surplusi ← 0
5 Surplus ← p−∑

i∈FreeTasks pi

6 foreach Ti such that pi < δ
(2)
i do

7 p′i ← pi+(share of Surplus proportional to the
weight of Ti)

8 t← time when the first task Tn ∈ FreeTasks is
completed with p′n processors

9 foreach task i ∈ FreeTasks do
10 allocate p′i processors to Ti until time t

11 FreeTasks ← FreeTasks \ {Tn}
12 foreach T ′ ∈ successors(Tn) such that T ′ has no

unprocessed predecessors do
13 FreeTasks ← FreeTasks ∪ {T ′}

Algorithm 5: GREEDYFILLING
(G = (V,E,w, δ(1), δ(2)), p)

1 Assign a priority priority(i) to each task Ti ∈ V
2 FreeTasks ← source tasks
3 while FreeTasks 6= ∅ do
4 Sort FreeTasks by non-increasing priorities;
5 for each task i in FreeTasks do
6 allocate at most δ(1)

i processors to task i
without exceeding p in total

7 if some processors are not yet allocated then
8 for each task i in FreeTasks do
9 allocate at most δ(2)

i processors to task i
without exceeding p in total

10 Schedule tasks until some task Tk completes
11 Remove Tk from FreeTasks , add its successors

whose predecessors have all completed

task at a time and greedily allocates it the largest possible
processing power.

We now detail this algorithm, presented in Algorithm 5.
First, each task is given a priority. In practice, we use for
each task Ti its critical path (i.e. bottom-level, see Section 3),
as it is a lower bound on the overall completion time once
task Ti has started. The algorithm builds the schedule in
chronological order while maintaining the set of free tasks.
The difference is that, instead of sharing the resources ac-
cording to the weight of tasks, we consider them in the order
defined by priorities. We allocate each task Ti up to δ

(1)
i

processors if possible, so as to stay in the perfect parallelism
zone. If there are processors in excess, we reconsider the
tasks in the same order, increasing their allocation up to
δ

(2)
i .

It is interesting to note that since the total number of
processors p and all thresholds are integers (δ(1)

i , δ
(2)
i ∈

N,∀Ti ∈ V), all allocated processors pi are integers too.

Theorem 3. GREEDYFILLING is a 1 + r− δ
(2)
min

p approximation

9

for makespan minimization, with δ
(2)
min = min

Ti∈V
δ

(2)
i and r =

maxi
δ
(2)
i

Ωi
.

Proof. This proof is a transposition of the classical proof by
Graham [40]. In any schedule produced by GREEDYFILL-
ING, let T1 be a task whose completion time is equal to the
completion time of the whole task graph. We consider the
last time t1 prior to the start of the execution of T1 at which
not all processors were fully used. If the execution of T1 did
not start at time t1 this is only because at least one ancestor
T2 of T1 was executed at time t1. Then, by induction we
build a dependence path Φ = Tk → . . . → T2 → T1 such
that all processors are fully used during the execution of the
entire schedule except, maybe, during the execution of the
tasks of Φ.

We consider the execution of any task Ti of Φ. At any
time during the execution interval(s) of Ti (due to malleabil-
ity it might be executed in disconnected intervals), either all
processors are fully used, or some processors are (partially)
idle and then, because of Step 9, δ(2)

i processors are allocated
to Ti. Therefore, during the execution of Ti, the total time
during which not all processors are fully used is at most
equal to wi

Ωi
and there are at most p − δ(2)

i idle processors.
Let Idle denote the sum of the idle areas in the schedule, i.e.,
idle periods multiplied by idle processors. Then we have:

Idle ≤
k∑

i=1

(
wi
Ωi
× (p− δ(2)

i)

)
≤ (p− δ(2)

min)×
k∑

i=1

wi
Ωi

≤ (p− δ(2)
min)len(cp) ≤ (p− δ(2)

min)MOPT.

Let Used denote the sum of the busy areas in the
schedule. As si is concave (cf. Equation (1), the busy area
dedicated to schedule the task Ti is maximized when Ti is
allocated to δ(2)

i processors. Then, the area is equal to δ
(2)
i wi
Ωi

and

Used ≤
∑

i

δ
(2)
i wi
Ωi

.

Now, let r = maxi
δ
(2)
i

Ωi
. Note that MOPT ≤

∑
i
wi
p . Then

we have:

Used ≤
∑

i

wir ≤ rpMOPT.

LetM be the makespan of the considered schedule. Then
we have:

M =
1

p
(Idle + Used) ≤

(
1 + r − δ

(2)
min

p

)
MOPT.

Note that the above proof makes little reference to how
the schedule of G has been constructed. The only important
characteristic is that the algorithm never leaves a processor
deliberately idle if there are tasks that could be scheduled.
Hence, the above approximation factor will also apply to
other algorithms which adhere to that characteristic:

Corollary 1. Any scheduling algorithm which never deliberately
leaves a processor idle if it could benefit to any available task is a

1 + r − δ(2)
min/p approximation for makespan minimization, with

δ
(2)
min = minTi∈V δ

(2)
i and r = maxi δ

(2)
i /Ωi.

The proof of Theorem 3 can easily be adapted to the
single threshold model, which gives the following result.
This is particularly useful to prove that the FLOWFLEX
algorithm, presented below, is an approximation algorithm.

Corollary 2. In the single threshold model (δi = δ
(1)
i = δ

(2)
i =

Ωi), any scheduling algorithm which never deliberately leaves a
processor idle if it could benefit to any available task is a 2 −
δmin

p approximation for makespan minimization where δmin is the
smallest threshold among all tasks.

The complexity of GREEDYFILLING is O(|V |2) as the
main loop is iterated O(|V |) times, going over O(|V |) tasks
each time. The total management and ordering of FreeTasks
can be done in O(|V | log |V |), e.g. with a priority queue.

6.4 The FlowFlex algorithm
We now introduce FLOWFLEX, a scheduling algorithm intro-
duced in [10] and designed for a model similar to the single
threshold variant described in Section 3, which considers
that δi = δ

(1)
i = δ

(2)
i = Ωi for all tasks i. FLOWFLEX first

allocates to each task its maximal number of processors δi,
as if there was an infinite number of processors available.
Then, in each time interval where the allocation is constant,
if the total number of allocated processors exceeds p, the
allocation is scaled down proportionally. This algorithm is
detailed in Algorithm 6.

In its original version, FLOWFLEX assumes a perfect
speedup before the threshold. Thus, scaling down the shares
of the tasks proportionally preserves the simultaneous com-
pletion of the amount of work performed in the original
interval. This is no longer true with imperfect speedup
functions. This is why we introduce an optimized version
FLOWFLEXREBALANCE that redistributes idle processors
among running tasks once a task completes the amount
of work it had to process in a given interval. The redis-
tribution is done proportionally to the thresholds δi, which
corresponds to the original allocation before scaling. This
optimized variant is described in Algorithm 7.

The complexity of FLOWFLEX is O(|V |2) as there are
at most |V | constant intervals, and each iteration of the
main loop is linear in |V |. The complexity of FLOWFLEXRE-
BALANCE O(|V |3) as the redistribution procedure is done
linearly in |V |.

7 EXPERIMENTAL COMPARISON

In this section we compare through simulation
the new heuristic (GREEDYFILLING), reference
heuristics (PROPMAPPING and FLOWFLEX) and the
proposed extensions of these reference heuristics
(PROPMAPREBALTHRESHOLD, PROPMAPREBALSIBLINGS
and FLOWFLEXREBALANCE). These simulations use either
synthetic graphs of synthetic tasks, or actual task trees
whose task execution times were recorded through actual
executions, as detailed below. Each algorithm has been
simulated in C++: given a graph of tasks, and a speed-up
function for each task, the schedule is computed. We
compare all heuristics through their makespan (total
completion time).

10

Algorithm 6: FLOWFLEX (G = (V,E,w, δ), p)

1 S ← schedule obtained by allocating δi processors to
Ti and starting tasks as soon as they are free

2 Sort tasks by non-decreasing completion times ti
/* We assume ti ≤ ti+1, t0 = 0. I is number

of allocation constant intervals */
3 t← 0
4 for i = 0 to I do
5 foreach Tj do work j ← amount of work

completed by task Tj in interval [ti; ti+1] of S
6 L← set of tasks Tj such that work j > 0
7 foreach Tj in L do
8 pj ← p× δj/

∑
k∈L δk

9 Starting at time t, allocate pj processors to Tj
until it completes work j at some time t′j

10 t← maxj∈L t′j

Algorithm 7: FLOWFLEXREBALANCE (GDAG =
(V,E,w, δ), p)
1 S ← schedule obtained by allocating pi processors to Ti

and starting tasks as soon as they are available
2 Sort tasks by non-decreasing completion times ti
/* We assume ti ≤ ti+1 and t0 = 0 */

3 t← 0
4 for i = 0 to n− 1 do
5 foreach Tj do work j ← amount of work completed

by task Tj in interval [ti; ti+1] of S.
6 L← set of tasks Tj such that work j > 0
7 foreach Tj in L do
8 pj ← p× δj/

∑
k∈L δk

9 repeat
10 Starting at time t, allocate pj processors to each

Tj ∈ L until one task Tl completes a work of
work l

11 t← time when task Tl has completed the work
work l

12 Remove Tl from L
13 foreach Tj in L do
14 pj ← pj + pl × δj/

∑
k∈L δk

15 Redistribute pk over the pj of the tasks of L,
proportionally to their threshold δ(2)

16 until L is empty

7.1 Datasets
First, we consider a set of 30 synthetic random SP-graphs
composed each of 200 nodes. In order to compute a random
SP-graph of x > 1 nodes, we follow the following recursive
strategy: toss k uniformly in [1, x− 1]; with a probability of
1/2, build a series composition of two random SP-graphs
of respectively k and x − k nodes and, otherwise, build
a parallel composition of these graphs. Then, in order to
generate a random task (i.e., a random graph of x = 1
node), we choose its weight w uniformly in [1; 1000]. The
first threshold, δ(1), is defined by δ(1) = dw/100e; hence,
δ(1) ∈ [1; 10]. The second threshold, δ(2), is uniformly
drawn in [δ(1), 2δ(1)]. The slope between the thresholds is
uniformly drawn in [0.5, 1]. Therefore, in this dataset (called
SYNTH), each task perfectly follows our speedup model.

Second, we consider a set of 24 trees whose size vary

from 39 to 5900 nodes. These elimination trees have been
generated (with either colamd [41] or scotch [42] order-
ing) using QR_MUMPS [36] on matrices from the University
of Florida Sparse Matrix Collection [43], such that each
task of a tree corresponds to the dense QR factorization of
the associated matrix. The completion time of a task solely
depends on the dimensions of the matrix. In order to deter-
mine the actual behavior of such a task, we benchmarked
the time necessary to perform this task for a number of
processors ranging from 1 to 24, as detailed in Section 4.
Thus, in this dataset (called TREES), a task is characterized
both by its parameters in our model (δ(1), δ(2) and Ω) and
by the set of its completion times recorded through actual
executions for up to 24 processors. The actual execution
times are used in the experiments to determine the finish
times of the scheduled trees (makespans).

7.2 Results

In order to compare the performance of these algorithms,
we use a generic tool called performance profile [44]. For a
given dataset, we compute the performance of each heuristic
on each graph and for each considered value for the total
number of available processors (namely 1, 2, 4, 6, 8, 10, 12,
16, 20 and 24). Then, instead of computing an average above
all the cases, a performance profile reports a cumulative
distribution function. Given a heuristic and a threshold τ
expressed in percentage, we compute the fraction of test
cases in which the performance of this heuristic is at most
τ% larger than the best observed performance, and plot
these results. Therefore, the higher the curve, the better
the method: for instance, for an overhead τ = 5%, the
performance profile shows how often a given method lies
within 5% of the smallest makespan obtained.

In Figure 5, we present the performance profiles for the
SYNTH dataset on the left, and the makespan obtained by
each heuristic on a sample graph on the right. On this latter
plot, the y-axis has been normalized by the classical lower
bound on makespan: the maximum of the critical path and
of the total work divided by the number of processors.

The first result is that GREEDYFILLING clearly outper-
forms the other algorithms: it has the best result in almost
95% of the test cases. On the other hand of the spectrum,
FLOWFLEX and PROPMAPPING are the two worst heuristics.
Both of them are clearly outperformed by their variants. Of
all these variants, the best one is obviously PROPMAPRE-
BALTHRESHOLD which achieves very good performance.
Although the difference with GREEDYFILLING is strik-
ing, one should remark that PROPMAPREBALTHRESHOLD
achieves a makespan within 5% of the best one in more
than 93% of the instances. The overall hierarchy could have
been expected as GREEDYFILLING is the only heuristic to
be aware of both thresholds, and among the other, only
PROPMAPREBALTHRESHOLD makes use of δ(2). In turn
these results suggest that the proposed speedup model
with two thresholds can be used effectively to shorten the
produced schedules.

The right-hand side of Figure 5 presents the typical
results for a sample graph. The respective performance of
heuristics is roughly independent of the number of available
processors, and GREEDYFILLING presents the best results.

11

0.00

0.25

0.50

0.75

1.00

0% 5% 10% 15% 20%
Maximal overhead

Fr
ac

ti
on

of
te

st
ca

se
s

1.0

1.1

1.2

1.3

0 5 10 15 20 25
Number of processors

N
or

m
al

iz
ed

m
ak

es
pa

n

Algorithm
GREEDYFILLING

PROPSCHEDULING

PROPMAPREBALTHRESHOLD

PROPMAPREBALSIBLINGS

FLOWFLEXREBALANCE

FLOWFLEX

Figure 5: Performance profiles for up to 24 processors on SYNTH (left, where the best performance is top-left) and
performance of the heuristics on a sample graph (right, where the best performance is bottom). Note that the following
figures use the same legend.

0.00

0.25

0.50

0.75

1.00

0% 2% 4% 6% 8%
Maximal overhead

Fr
ac

ti
on

of
te

st
ca

se
s

Figure 6: Performance profiles for up to 24 processors on
TREES. Note the scale difference to Figure 5.

Overall, the shape of the curves were predictable: when
there are very few available processors, there is little pos-
sibility of wasting computational resources and all heuris-
tics achieve near-perfect performance; when the number
of processors is very large all heuristics that are aware of
the second threshold provide similar processor allocation
and achieve similar near-perfect performance. The hardest
part is in the intermediate zone when the most significant
differences can be observed.

We present the performance profile for the TREES dataset
in Figure 6, with additional representative samples in Fig-
ures 7 and 8. The legend of these graphs is the same
as the one of Figure 5. The first observation to be made
is that the difference between the graphs has signifi-
cantly decreased. For each of the four heuristics GREEDY-
FILLING, PROPMAPREBALTHRESHOLD, PROPMAPREBAL-
SIBLINGS, and FLOWFLEXREBALANCE, in 80% of the cases
the overhead is at most 2% and in 63% of the cases it is at
most 1%.

An explanation for this is that the trees of this dataset
often contain a task (near the root one) whose completion
time is far beyond the rest of the graph, as illustrated on the
right in Figures 7 and 8.

Within the small difference between the algorihtm,
the results are similar to the previous data set (ignor-
ing GREEDYFILLING for the moment): FLOWFLEX and
PROPMAPPING are the two worst heuristics; both heuristics
are clearly outperformed by their variants; PROPMAPRE-
BALTHRESHOLD achieves the best performance among these
variants, but this time the performance of PROPMAPRE-
BALSIBLINGS is almost indistinguishable from that of
PROPMAPREBALTHRESHOLD. GREEDYFILLING also per-
forms better than the previously proposed algorithms
FLOWFLEX and PROPMAPPING, but its relative performance
compared with the proposed variants has changed: its
performance on actual trees (Figure 6) is now slightly
behind these variants, when it was clearly the best solu-
tion on synthetic ones (Figure 5). The better performance
of PROPMAPREBALSIBLINGS compared to GREEDYFILLING
may be surprising because PROPMAPREBALSIBLINGS does
not have any knowledge on the computed (estimated)
thresholds. This performance is actually due to the structure
of the graphs, as detailed below.

One should recall that the performance profiles gather
results over the whole dataset. Varying performance of an
algorithm can depend upon the structure of the tree and
the processing power available. GREEDYFILLING achieves
very good results when the structure of the graph is well-
balanced, which is generally the case in the SYNTH dataset
(Figure 5) as the graphs are generated recursively, as well as
in the actual tree of Figure 7. This remark comes from the
fact that GREEDYFILLING tries to maximize the efficiency of
the allocation from the beginning of the schedule: if possible,
it limits the allocation to every task to its first threshold, so
that the overall speedup remains perfect. This explains why
GREEDYFILLING is the best heuristic for medium numbers
of processors in Figure 7: the tree is well-balanced, and
for this range of processors, maintaining a perfect speedup
is more efficient than balancing the allocation in the way
PROPMAPREBALSIBLINGS does. However, GREEDYFILLING
performance degrades relatively when some branches in
the tree are far from being critical and should have their
execution delayed, even if this means exceeding the first
threshold on other tasks and having a non-perfect speedup.

12

1.00

1.05

1.10

0 5 10 15 20 25
Number of processors

N
or

m
al

iz
ed

m
ak

es
pa

n

Figure 7: Performance of the heuristics and visual representation of the tree lp-nug30-colamd, where the area of a node is
proportional to its sequential execution time.

1.00

1.05

1.10

1.15

0 5 10 15 20 25
Number of processors

N
or

m
al

iz
ed

m
ak

es
pa

n

Figure 8: Performance of the heuristics and visual representation of the tree GL7-d24-scotch, where the area of a node is
proportional to its sequential execution time.

Therefore it only achieves average performance on the
TREES dataset (Figure 6), where other heuristics frequently
have slightly better performance. For instance, the tree of
Figure 8 has a highly critical branch on the right side, and
GREEDYFILLING does not allocate enough processors to this
branch at the beginning of the schedule, which leads to
performance worse than that of the simple PROPSCHEDU-
LING for average numbers of processors. With few proces-
sors, GREEDYFILLING fully prioritizes the critical branch
as the first thresholds are not reached yet, and therefore
achieves very good performance. In such a tree and with
sufficient processing power, PROPMAPREBALSIBLINGS and
PROPMAPREBALTHRESHOLD are the better choice as they
progress quicker on the critical branches.

PROPMAPREBALTHRESHOLD achieves very good per-
formance for synthetic graphs and is then only surpassed
by GREEDYFILLING. It also achieves the best performance
(with PROPMAPREBALSIBLINGS) for actual graphs. There-
fore, PROPMAPREBALTHRESHOLD is never a bad choice
(for the tested configurations). No other heuristic has this
characteristic. One can also note that if PROPMAPREBALSIB-
LINGS achieves rather bad performance for synthetic graphs,
it represents one of the best heuristics for actual graphs.
This heuristic furthermore presents a practical advantage

over PROPMAPREBALTHRESHOLD, whose effect is not taken
in account in our model: it preserves the locality of the
computations, allocating idle processors on tasks from the
same branch as the node they were executing.

In order to measure the benefits of the double-threshold
model, we adapted GREEDYFILLING, which first allocates
each free task to their threshold, before distributing the
processors in excess among the free tasks, to the single
threshold model. In order to simulate this variant on both
datasets, we have computed for each task the value of the
single δj threshold that fits the best the measured speedup,
see Section 4. We then compare in Figure 9 the performance
of GREEDYFILLING in the single-threshold model and the
double-threshold model. The single-threshold model leads,
as expected, to a lower performance. On the SYNTH dataset,
the double-threshold model obtains better results than the
single threshold model for more than 80% of the test cases.
This proportion is equal to around 70% for the TREES
dataset. The improvement is more important on the SYNTH
dataset, because, as discussed previously, the structure of
the trees in the dataset TREES impacts the performance
of GREEDYFILLING. On both settings, GREEDYFILLING sig-
nificantly benefits from the better accuracy of the double-
threshold model. Note that in the case of the SYNTH dataset,

13

0.00

0.25

0.50

0.75

1.00

0.0% 2.5% 5.0% 7.5% 10.0%
Maximal overhead

Fr
ac

ti
on

of
te

st
ca

se
s

SYNTH dataset

0.00

0.25

0.50

0.75

1.00

0.0% 2.5% 5.0% 7.5% 10.0%
Maximal overhead

Fr
ac

ti
on

of
te

st
ca

se
s

TREES dataset

Algorithm GREEDYFILLING GREEDYFILLING (one threshold)

Figure 9: Performance profiles comparing the performance of GREEDYFILLING with the double-threshold model and the
single-threshold model, on both datasets.

the improvement of GREEDYFILLING over the other heuris-
tics (as illustrated of Figure 5) is mainly due to the use of the
double-threshold model: with the single-threshold model,
GREEDYFILLING would perform much worse, comparabily
to the other heuristics.

8 CONCLUSION

In this paper, we have proposed a simple, but practical
speedup model for graphs of malleable tasks, which is an
interesting trade-off between tractability and accuracy. We
have first provided an NP-hardness proof of the makespan
minimization problem under this model. This was followed
by a study of heuristic solutions, where we proposed model-
optimized variants of the existing algorithms PROPMAP-
PING and FLOWFLEX. Designed for the new speedup model,
we also proposed the novel GREEDYFILLING algorithm and
demonstrated that GREEDYFILLING and PROPMAPPING are
2-approximation algorithms. To evaluate the algorithms,
we performed simulations both on synthetic series-parallel
graphs and on real task trees from linear algebra appli-
cations. They demonstrated the general superiority of the
new GREEDYFILLING and the model-optimised variants of
the traditional algorithms. In general, employing the new
speedup model helps to improve the scheduling results.
In a future work, a similar study could be conducted for
computing systems that do not allow to reconfigure task
mapping, i.e., for moldable tasks.

9 ACKNOWLEDGMENTS

The authors would like to thank Abdou Guermouche for
providing the QR-MUMPS datasets as well as technical
support for the experimental work. This work was partially
supported by the SOLHAR project and by the LABEX
MILYON (ANR-10-LABX-0070), both being operated by the
French National Research Agency (ANR). Experiments pre-
sented in this paper were carried out using the PLAFRIM
experimental testbed (https://www.plafrim.fr/), being de-
veloped under the Inria PlaFRIM development action with
support from Bordeaux INP, LABRI and IMB and other enti-
ties: Conseil Régional d’Aquitaine, Université de Bordeaux
and CNRS (and ANR in accordance to the programme
d’investissements d’Avenir).

REFERENCES

[1] M. Drozdowski, “Scheduling parallel tasks – algorithms and com-
plexity,” in Handbook of Scheduling, J. Leung, Ed. Chapman and
Hall/CRC, 2004.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier,
“StarPU: a unified platform for task scheduling on heterogeneous
multicore architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, no. 2, pp. 187–198, 2011.

[3] T. Gautier, X. Besseron, and L. Pigeon, “KAAPI: A thread schedul-
ing runtime system for data flow computations on cluster of multi-
processors,” in PASCO’07, 2007, pp. 15–23.

[4] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta, “Hierarchical
task-based programming with StarSs,” IJHPCA, vol. 23, no. 3, pp.
284–299, 2009.

[5] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and
J. J. Dongarra, “PaRSEC: Exploiting heterogeneity for enhancing
scalability,” Computing in Science & Engineering, vol. 15, no. 6, pp.
36–45, 2013.

[6] OpenMP Architecture Review Board, “OpenMP application
program interface, version 4.0,” http://www.openmp.org/
mp-documents/OpenMP4.0.0.pdf, Jul. 2013.

[7] A. Radulescu, C. Nicolescu, A. J. C. van Gemund, and P. Jonker,
“CPR: mixed task and data parallel scheduling for distributed
systems,” in IPDPS’01, 2001, p. 39.

[8] P. Dutot, T. N’Takpé, F. Suter, and H. Casanova, “Scheduling paral-
lel task graphs on (almost) homogeneous multicluster platforms,”
IEEE TPDS, vol. 20, no. 7, pp. 940–952, 2009.

[9] M. Drozdowski and W. Kubiak, “Scheduling parallel tasks with
sequential heads and tails,” Annals of Operations Research, vol. 90,
no. 0, pp. 221–246, 1999.

[10] V. Nagarajan, J. Wolf, A. Balmin, and K. Hildrum, “Flowflex:
Malleable scheduling for flows of mapreduce jobs,” in Middleware
2013. Springer, 2013, pp. 103–122.

[11] A. Hugo, A. Guermouche, P. Wacrenier, and R. Namyst, “Compos-
ing multiple StarPU applications over heterogeneous machines: A
supervised approach,” IJHPCA, vol. 28, no. 3, pp. 285–300, 2014.

[12] R. McNaughton, “Scheduling with deadlines and loss functions,”
Management Science, vol. 6, no. 1, pp. 1–12, 1959.

[13] J. W. H. Liu, “The role of elimination trees in sparse factorization,”
SIAM SIMAX journal, vol. 11, no. 1, pp. 134–172, 1990.

[14] E. Günther, F. König, and N. Megow, “Scheduling and pack-
ing malleable and parallel tasks with precedence constraints of
bounded width,” Journal of Combinatorial Optimization, vol. 27,
no. 1, pp. 164–181, 2014.

[15] M. Drozdowski, “Scheduling multiprocessor tasks — an
overview,” EJOR, vol. 94, no. 2, pp. 215 – 230, 1996.

[16] R. Lepère, D. Trystram, and G. J. Woeginger, “Approximation
algorithms for scheduling malleable tasks under precedence con-
straints,” IJFCS, vol. 13, no. 04, pp. 613–627, 2002.

[17] K. Jansen and H. Zhang, “An approximation algorithm for
scheduling malleable tasks under general precedence constraints,”
in ISAAC 2005, 2005, pp. 236–245.

14

[18] S. Hunold, “One step toward bridging the gap between the-
ory and practice in moldable task scheduling with precedence
constraints,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 4, pp. 1010–1026, 2015.

[19] K. Makarychev and D. Panigrahi, “Precedence-constrained
scheduling of malleable jobs with preemption,” in ICALP 2014,
2014, pp. 823–834.

[20] L. Fan, F. Zhang, G. Wang, and Z. Liu, “An effective approximation
algorithm for the malleable parallel task scheduling problem,” J. of
Parallel and Distributed Computing, vol. 72, no. 5, pp. 693–704, 2012.

[21] G. N. S. Prasanna and B. R. Musicus, “Generalized multiprocessor
scheduling and applications to matrix computations,” IEEE TPDS,
vol. 7, no. 6, pp. 650–664, 1996.

[22] A. Guermouche, L. Marchal, B. Simon, and F. Vivien, “Scheduling
trees of malleable tasks for sparse linear algebra,” in Proceedings of
Euro-Par: Parallel Processing, 2015, pp. 479–490.

[23] O. Beaumont, N. Bonichon, L. Eyraud-Dubois, and L. Marchal,
“Minimizing weighted mean completion time for malleable tasks
scheduling,” in IPDPS 2012, 2012, pp. 273–284.

[24] Q. Wang and K.-H. Cheng, “A heuristic of scheduling parallel
tasks and its analysis,” SIAM Journal on Computing, vol. 21, no. 2,
pp. 281–294, 1992.

[25] Y. Zinder and S. Walker, “Scheduling flexible multiprocessor tasks
on parallel machines,” in The 9th Workshop on Models and Algo-
rithms for Planning and Scheduling Problems, 2009.

[26] J. T. Havill and W. Mao, “Competitive online scheduling of
perfectly malleable jobs with setup times,” European Journal of
Operational Research, vol. 187, no. 3, pp. 1126–1142, 2008.

[27] J. Du and J. Y.-T. Leung, “Complexity of scheduling parallel task
systems,” SIAM J. on Discrete Math., vol. 2, no. 4, pp. 473–487, 1989.

[28] N. Kell and J. Havill, “Improved upper bounds for online mal-
leable job scheduling,” J. of Sched., vol. 18, no. 4, pp. 393–410, 2015.

[29] V. Vizing, “Minimization of the maximum delay in servicing
systems with interruption,” USSR Computational Mathematics and
Mathematical Physics, vol. 22, no. 3, pp. 227 – 233, 1982.

[30] T. E. Carroll and D. Grosu, “Incentive compatible online schedul-
ing of malleable parallel jobs with individual deadlines,” in Paral-
lel Processing (ICPP), 2010 39th International Conference on. IEEE,
2010, pp. 516–524.

[31] J. Valdes, R. E. Tarjan, and E. L. Lawler, “The recognition of series
parallel digraphs,” SIAM J. Comput., vol. 11, no. 2, pp. 298–313,
1982.

[32] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in Workflows in
Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop
on, nov. 2008, pp. 1 –10.

[33] A. González-Escribano, A. J. C. van Gemund, and V. Cardeñoso-
Payo, “Mapping unstructured applications into nested paral-
lelism,” in VECPAR 2002, 2002, pp. 407–420.

[34] G. Cordasco, R. D. Chiara, and A. L. Rosenberg, “Assessing the
Computational Benefits of AREA-Oriented DAG-Scheduling,” in
Proceedings of Euro-Par: Parallel Processing, 2011, pp. 180–192.

[35] O. Sinnen, Task Scheduling for Parallel Systems, ser. Wiley series on
parallel and distributed computing. Wiley, 2007.

[36] E. Agullo, A. Buttari, A. Guermouche, and F. Lopez, “Implement-
ing multifrontal sparse solvers for multicore architectures with
sequential task flow runtime systems,” ACM Trans. Math. Softw.,
vol. 43, no. 2, p. 13, 2016.

[37] M. R. Garey and D. S. Johnson, Computers and Intractability, a Guide
to the Theory of NP-Completeness. W. H. Freeman and Co, 1979.

[38] A. Pothen and C. Sun, “A mapping algorithm for parallel sparse
cholesky factorization,” SIAM Journal on Scientific Computing,
vol. 14, no. 5, pp. 1253–1257, 1993.

[39] A. Hugo, A. Guermouche, P. Wacrenier, and R. Namyst, “A
runtime approach to dynamic resource allocation for sparse direct
solvers,” in ICPP 2014, 2014, pp. 481–490.

[40] R. L. Graham, “Bounds for certain multiprocessing anomalies,”
Bell System Technical Journal, vol. 45, no. 9, pp. 1563–1581, 1966.

[41] T. A. Davis, J. R. Gilbert, S. I. Larimore, and E. G. Ng, “A column
approximate minimum degree ordering algorithm,” ACM Trans.
Math. Softw., vol. 30, no. 3, pp. 377–380, 2004.

[42] F. Pellegrini and J. Roman, “Sparse matrix ordering with Scotch,”
in HPCN-Europe 1997. Springer, 1997, pp. 370–378.

[43] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, 2011.

[44] D. E. Dolan and J. J. Moré, “Benchmarking optimization software
with performance profiles,” Mathematical Programming, vol. 91,
no. 2, pp. 201–213, 2002.

Loris Marchal graduated in Computer Sciences
and received his PhD from École Normale
Supérieure de Lyon (ENS Lyon, France), in
2006. He is now a CNRS researcher at the LIP
laboratory of ENS Lyon. His research interests
include parallel computing and scheduling.

Bertrand Simon graduated in Computer Sci-
ences at École Normale Supérieure de Lyon
(ENS Lyon, France). He is now pursuing his PhD
at the LIP laboratory of ENS Lyon. His research
interests include data structures, parallel com-
puting and scheduling.

Oliver Sinnen graduated in Electrical and Com-
puter Engineering at RWTH Aachen University,
Germany and received his PhD from Instituto
Superior Técnico (IST), University of Lisbon,
Portugal. He is a Senior Lecturer in the De-
partment of Electrical and Computer Engineer-
ing at the University of Auckland, New Zealand,
where he leads the Parallel and Reconfigurable
Computing Lab. Oliver authored the book “Task
Scheduling for Parallel Systems”, Wiley.

Frédéric Vivien graduated in Computer Sci-
ences and received his PhD from École Nor-
male Supérieure de Lyon in 1997. From 1998 to
2002, he was an associate professor at the Louis
Pasteur University in Strasbourg, France. He is
currently an INRIA senior researcher at ENS
Lyon, France, where he leads the INRIA project-
team Roma. His main research interests include
parallel computing, scheduling, and resilience
techniques. He is the author of two books.

1

Web supplementary material for the article:
Malleable task-graph scheduling with a practical

speed-up model
Loris Marchal, Bertrand Simon, Oliver Sinnen, and Frédéric Vivien

F

We provide here the proof of Lemma 2, which is used in
the proof of Theorem 1. We first recall its statement.

Lemma 2. In any valid schedule S for J ,
i) each pair of chains Lxi

, Lxi
is completely processed during

time interval [ti,M − ti],
ii) one of them is started at time ti and the other one at time

ti + 1,
iii) all tasks of both chains are allocated their threshold,
iv) there is no idle time between any two consecutive tasks of

each chain.

Proof. The proof is done by induction on i, by carefully
checking when the first and last tasks of chains Lxi

, Lxi

may be scheduled, given the resources which are not used
by the previous chains and by Lpro.

Base case: Consider i = 1. The critical path of chains Lx1

and Lx1 is 4n+2m−4i+3 = 4n+2m−1. WithM = 4n+2m,
both have to start in the interval [0, 1].

The following discussion of the base case is written in
general terms (that is for any i) to reuse it in the inductive
step, but applies here for i = 1, with t1 = 0.

We consider the first task of chain Lxi and the first task
of chain Lxi . Both tasks have weight 1. Let A denote the
first of these two tasks to complete (at a time tA) and let
B be the other one (which completes at time tB). Given
the 2(i − 1) chains already scheduled (none for i = 1), the
number of processors available during interval [ti, ti + 1]
is 1 and during interval [ti + 1, ti + 2] is 1 + ε. A and B
both complete at or after time ti + 1. We note tA = ti +
1 + ∆1 and tB = ti + 1 + ∆1 + ∆2 (∆1 ≥ 0 and ∆2 ≥ 0).
Note that because of the critical path length of the remaining
tasks of both chains and the limited time span, ∆1 ≤ 1 and
∆1 + ∆2 ≤ 1. The following figure illustrates the previous
notations and the amount of processors available for tasks
A and B (note that after time tA, B may use only δB = 1
processor).

• L. Marchal, B. Simon and F. Vivien are with CNRS, INRIA and Univer-
sity of Lyon, LIP, ENS Lyon, 46 allée d’Italie, Lyon, France.
E-mail: {loris.marchal,bertrand.simon,frederic.vivien}@ens-lyon.fr

• O. Sinnen is with Dpt. of Electrical and Computer Engineering, Univer-
sity of Auckland, New Zealand
E-mail: o.sinnen@auckland.ac.nz

t

p

1 ∆1 ∆2

1

1 + ε

tA tB

Since wA +wB = 2 work units have to be performed before
time tB , we have

1 + ∆1(1 + ε) + ∆2 ≥ 2

and thus ∆2 ≥ 1−∆1(1 + ε) and tB ≥ ti + 2−∆1ε.
We symmetrically apply the same reasoning to the last

tasks C and D of these two chains, and their starting times
tC and tD, assuming that C is started before D. By setting
tD = M − ti − 1−∆′1, we get tC ≤ M − ti − 2 + ∆′1ε. We
distinguish between two cases, depending on the chains to
which A, B, C , and D belong to:
• In the first case, we assume that A and D belong to the

same chain. We consider the other chain, containing B
and C . Because exactly 4(n− i) + 2m+ 1 tasks need to
be processed between these two tasks, we have

tC ≥ tB + 4(n− i) + 2m+ 1

which gives
∆′1ε ≥ 1−∆1ε

We have ∆1 ≤ 1 and similarly, ∆′1 ≤ 1. Together with
the previous inequality, this gives ε ≥ 1/2 which is not
possible since ε = 1/4n. Hence B and C cannot belong
to the same chain.

• In the second case, we consider that A and C belong to
the same chain. Because exactly 4(n− i) + 2m+ 1 tasks
need to be processed between A and C (and between
B and D), we have

tC ≥ tA+4(n−i)+2m+1 and tD ≥ tB+4(n−i)+2m+1

which gives

2m+4n− ti−2+∆′1ε ≥ ti +1+∆1 +4(n− i)+2m+1

2

and

2m+4n−ti−1−∆′1 ≥ ti+2−∆1ε+4(n−i)+2m+1,

which are simplified (using ti = 2(i− 1)) into

∆′1ε ≥ ∆1 and ∆′1 ≤ ∆1ε.

This leads to ∆1 ≤ ∆1ε
2. As 0 < ε < 1, we have

∆1 = 0, so tA = ti + 1. Then, no processor can be
allocated to B during [ti, ti+1].

In other words, one task among the first task of Lxi and the
first task of Lxi is fully processed during interval [ti, ti + 1]
and the other one is not processed before ti + 1. Because
of its critical path length, the chain starting second must be
processed at full speed (each task being allocated a number
of processors equal to its threshold) and without idle time in
the interval [ti+1,M−ti]. The last task of the chain starting
at time ti must then be completed at timeM−ti−1 and thus
this chain must also be processed at full speed and without
idle time. This also implies that all available processors are
used in the intervals [ti, ti + 2] and [M − ti − 2,M − ti].

Inductive step: Now assume that the lemma holds for
i − 1. With t1 = 0 and the inductive property on the
last observation we know that no processor is available for
chains Lxi and Lxi before 2(i − 1) and after M − 2(i − 1).
The time span available for the remaining chains is thus
4n + 2m − 4i + 4 while the critical path of chains Lxi and
Lxi is 4n + 2m − 4i + 3: these chains cannot be started
after 2(i − 1) + 1 to be completed within the time span.
Setting ti = 2(i + 1) we reuse the above argument about
the scheduling of the two chains Lxi and Lxi , which proves
(i)-(iv).

