
A General Framework for Handling
Commitment in Online Throughput

Maximization

Lin Chen1, Franziska Eberle2(B), Nicole Megow2, Kevin Schewior3,4,
and Cliff Stein5

1 Department of Computer Science, University of Houston, Houston, TX, USA
chenlin198662@gmail.com

2 Department for Mathematics/Computer Science,
University of Bremen, Bremen, Germany
{feberle,nicole.megow}@uni-bremen.de

3 Fakultät für Informatik, Technische Universität München, München, Germany
kschewior@gmail.com

4 Département d’Informatique, École Normale Supérieure, Paris, France
5 Department of IEOR, Columbia University, New York, USA

cliff@ieor.columbia.edu

Abstract. We study a fundamental online job admission problem where
jobs with deadlines arrive online over time at their release dates, and the
task is to determine a preemptive single-server schedule which maximizes
the number of jobs that complete on time. To circumvent known impos-
sibility results, we make a standard slackness assumption by which the
feasible time window for scheduling a job is at least 1+ε times its process-
ing time, for some ε > 0. We quantify the impact that different provider
commitment requirements have on the performance of online algorithms.
Our main contribution is one universal algorithmic framework for online
job admission both with and without commitments. Without commit-
ment, our algorithm with a competitive ratio of O(1/ε) is the best possi-
ble (deterministic) for this problem. For commitment models, we give the
first non-trivial performance bounds. If the commitment decisions must
be made before a job’s slack becomes less than a δ-fraction of its size,
we prove a competitive ratio of O(ε/((ε − δ)δ2)), for 0 < δ < ε. When
a scheduler must commit upon starting a job, our bound is O(1/ε2).
Finally, we observe that for scheduling with commitment the restriction
to the “unweighted” throughput model is essential; if jobs have individual
weights, we rule out competitive deterministic algorithms.

N. Megow—Supported by the German Science Foundation (DFG) Grant ME 3825/1.
K. Schewior—Supported by CONICYT Grant PII 20150140 and DAAD PRIME pro-
gram.
C. Stein—Research partly supported by NSF Grants CCF-1714818 and CCF-1822809.

c© Springer Nature Switzerland AG 2019
A. Lodi and V. Nagarajan (Eds.): IPCO 2019, LNCS 11480, pp. 141–154, 2019.
https://doi.org/10.1007/978-3-030-17953-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17953-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-17953-3_11

142 L. Chen et al.

1 Introduction

Many modern computing environments, such as internal clusters and public
clouds, involve a centralized system for managing the resource allocation of a
large diverse workload [21] with a heterogeneous mixture of jobs. In this paper,
we will study scheduling policies, evaluated by the commonly used notion of
throughput which is the number of jobs completed, or if jobs have weights, the
total weight of jobs completed. Throughput is a “social welfare” objective that
tries to maximize total utility. To this end, a solution may abort jobs close to
their deadlines in favor of many shorter and more urgent tasks [11]. However,
for many industrial applications, service providers have to commit to complete
admitted jobs since without such a guarantee, some applications will fail or
customers may be unhappy and choose another environment.

Formally, we consider a fundamental single-machine scheduling model in
which jobs arrive online over time at their release date rj . Each job has a pro-
cessing time pj ≥ 0, a deadline dj , and possibly a weight wj > 0. In order to
complete, a job must receive pj units of processing time in the interval [rj , dj). If
a schedule completes a set S of jobs, then the throughput is |S| while the weighted
throughput is

∑
j∈S wj . To measure the quality of an online algorithm, we use

standard competitive analysis where its performance is compared to that of an
optimal offline algorithm with full knowledge of the future.

Deadline-based objectives are typically much harder to optimize than other
Quality-of-Service (QoS) metrics such as response time or makespan. Indeed, the
problem becomes hopeless when preemption (interrupting a job and resuming it
later) is not allowed: whenever an algorithm starts a job j without being able
to preempt it, it may miss the deadlines of an arbitrary number of jobs. For
scheduling with commitment, we provide a similarly strong lower bound for the
preemptive version of the problem in the presence of weights. Therefore, we focus
on unweighted preemptive online throughput maximization.

Hard examples for online algorithms tend to involve jobs that arrive and then
must immediately be processed since dj−rj ≈ pj . To bar such jobs from a system,
we require that any submitted job contains some slack. An instance has ε-slack if
every job satisfies dj − rj ≥ (1+ ε)pj . We develop algorithms whose competitive
ratio depends on ε. This slackness parameter captures certain aspects of QoS
provisioning and admission control, see, e.g., [13,19], and it has been considered
in previous work, e.g., in [2,4,12,14,21,23]. Other results for scheduling with
deadlines use speed scaling, which can be viewed as adding slack to the schedule,
e.g., [1,3,15,22]. In this paper we quantify the impact that different commitment
requirements have on the performance of online algorithms.

1.1 Our Results and Techniques

Our main contribution is a general algorithmic framework, called the region
algorithm, for online scheduling with and without commitments. We prove per-
formance guarantees which are either tight or constitute the first non-trivial
results. We also answer open questions in previous work. We show strong lower
bounds for the weighted case. Thus, our algorithms are all for unit weights wj = 1.

Handling Commitment in Online Throughput Maximization 143

Optimal Algorithm for Scheduling Without Commitment. We show that
the region algorithm achieves a competitive ratio of O(1ε), and give a matching
lower bound (ignoring constants) for any deterministic online algorithm.

Impossibility Results for Commitment Upon Job Arrival. In this most
restrictive model, an algorithm must decide immediately at a job’s release date
if the job will be completed. We show that no (randomized) online algorithm
admits a bounded competitive ratio. Such a lower bound has only been shown
by exploiting job weights [21,25]. Hence, we do not consider this model further.

Scheduling With Commitment. We distinguish two different models:
(i) commitment upon job admission and (ii) δ-commitment. In the first model,
an algorithm may discard a job any time before its start. In the second model,
an online algorithm must commit to complete a job when its slack has reduced
from the original slack requirement of an ε-fraction of the size to a δ-fraction
for 0 < δ < ε, modeling an early-enough commitment for mission-critical jobs.
We show that implementations of the region algorithm yield a competitive
ratio of O(1/ε2) for commitment upon admission and a competitive ratio of
O(ε/((ε − δ)δ2)), for 0 < δ < ε, in the δ-commitment model. These are the
first rigorous non-trivial upper bounds—for any commitment model (excluding
wj = pj).

Instances with arbitrary weights are hopeless without further restrictions.
We show that there is no deterministic online algorithm with bounded compet-
itive ratio, neither for commitment upon admission (also shown in [2]) nor for
δ-commitment. Informally, our construction implies that there is no determinis-
tic online algorithm with bounded competitive ratio in any commitment model
in which a scheduler may have to commit to a job before it has completed.
(See Sect. 5 for more details.) We rule out bounded performance guarantees for
ε ∈ (0, 1). For sufficiently large slackness (ε > 3), an online algorithm is pro-
vided in [2] that has bounded competitive ratio. Our new lower bound answers
affirmatively the open question of whether high slackness is indeed required.

Finally, our impossibility result for weighted jobs and the positive result for
instances without weights clearly separate the weighted from the unweighted
setting. Hence, we do not consider algorithms for weighted throughput.

Our Techniques. Once a job j is admitted to the system, its slack becomes a
scarce resource: To complete the job on time one needs to carefully “spend” the
slack on admitting jobs to be processed before the deadline of j. Our general
framework for admission control, the region algorithm, addresses this issue
by the concept of “responsibility”: Whenever a job j′ is admitted while j could
be processed, j′ becomes responsible for not admitting similar-length jobs for a
certain period, its region. The intention is that j′ reserves time for j to complete.
To balance between reservation (commitment to complete j) and performance
(loss of other jobs), the algorithm uses the parameters α and β, which specify
the length of a region and the similarity of job lengths.

A major difficulty in the analysis is understanding the complex interval struc-
ture formed by feasible time windows, regions, and processing time intervals.

144 L. Chen et al.

Here, the key ingredient is that regions are defined independently of scheduling
decisions. Thus, the analysis can be naturally split into two parts. In the first
part, we argue that the scheduling routine can handle the admitted jobs suffi-
ciently well for aptly chosen parameters α and β. That means that the respective
commitment model is obeyed and, if not implied by that, an adequate number of
the admitted jobs is completed. In the second part, we can disregard how jobs
are actually scheduled and argue that the region algorithm admits sufficiently
many jobs to be competitive with an optimum solution. The above notion of
“responsibility” suggests a proof strategy mapping jobs that are completed in
the optimum to the corresponding job that was “responsible” due to its region.
Transforming this idea into a charging scheme is, however, a non-trivial task as
there might be many (� Θ(1

ε2)) jobs released within the region of a single job j
and completed by the optimum but not admitted by the region algorithm due to
many consecutive regions of varying size. We develop a careful charging scheme
that avoids such overcharging. We handle the complex interval structure by
working on a natural tree structure (interruption tree) related to the region con-
struction and independent of the actual schedule. Our charging scheme comprises
two central routines for distributing charge: Moving charge along a sequence of
consecutive jobs (Push Forward) or to children (Push Down).

1.2 Previous Results

Preemptive online scheduling and admission control have been studied rigor-
ously, see, e.g., [5,12,14] and references therein. Impossibility results for jobs with
hard deadlines and without slack have been known for decades [6,7,17,18,20].

Most research on online scheduling does not address commitment. The
only results independent of slack (or other job-dependent parameters) concern
weighted throughput for the special case wj = pj , where a constant competitive
ratio is possible [6,17,18,24]. In the unweighted setting, a randomized O(1)-
competitive algorithm is known [16]. For instances with ε-slack, an O(1

ε2)-
competitive algorithm in the general weighted setting is given in [21]. To the
best of our knowledge, no lower bound was known to date.

Much less is known for scheduling with commitment. In the most restrictive
model, commitment upon job arrival, Lucier et al. [21] rule out competitive online
algorithms for any slack parameter ε when jobs have arbitrary weights. For
commitment upon job admission, they give a heuristic that empirically performs
very well but without a rigorous worst-case bound. Azar et al. [2] show that
no bounded competitive ratio is possible for weighted throughput maximization
for small ε. For the δ-commitment model, [2] design (in the context of truthful
mechanisms) an online algorithm that is O(1

ε2)-competitive for large slack ε.
They left open if this latter condition is an inherent property of any committed
scheduler in this model which we answer affirmatively. The machine utilization
variant (wj = pj) is better tractable as greedy algorithms achieve the best
possible competitive ratio Θ(1ε) [10,12] in all mentioned commitment models.

Handling Commitment in Online Throughput Maximization 145

2 Our General Framework

2.1 The Region Algorithm

We now present our general algorithmic framework for scheduling with and with-
out commitment. We assume that the slackness constant ε > 0 and, in the
δ-commitment model, 0 < δ < ε are known to the online algorithm.

Algorithm 1.1. Region algorithm

Scheduling routine: At any time t, run an admitted and not yet completed job
with shortest processing time.

Event: Upon release of a new job at time t or Upon ending of a region at time t:
Call region preemption routine.

Region preemption routine:
k ← the job whose region contains t
i ← a shortest available job at t, i.e.,

i = arg min{pj | rj ≤ t and dj − t ≥ (1 + δ)pj}
If pi < βpk, then
1. admit job i and reserve region R(i) = [t, t + αpi),
2. update remaining regions R(j) with R(j) ∩ [t, ∞) �= ∅ as described below

We first describe informally three underlying design principles. The third
principle is crucial to improve on existing results that only use the first two [21].

1. A running job can be preempted only by smaller jobs (parameter β).
2. A job cannot start for the first time when its remaining slack is too small

(constant δ in the δ-commitment model and otherwise set to δ = ε
2).

3. If a job preempts other jobs, then it takes “responsibility” for a certain time
interval (parameter α) in which the jobs it preempted can be processed.

The region algorithm has two parameters, α ≥ 1 and 0 < β < 1. A region,
R(j) for job j, is a union of time intervals associated with j, and the size of the
region is the sum of sizes of the intervals. Region R(j) will always have size αpj ,
although the particular time intervals composing the region may change over
time. Regions are always disjoint. Informally, whenever our algorithm starts a
job i (we say i is admitted) that arrives during the region of an already admitted
job j, then the current interval of j is split into two intervals and the region R(j)
and all later regions are delayed.

Formally, at any time t, the region algorithm maintains two sets of jobs:
admitted jobs, which have been started before or at time t, and available jobs. A
job j is available if it is released before or at time t, is not yet admitted, and it is
not too close to its deadline, i.e., rj ≤ t and dj −t ≥ (1+δ)pj . The intelligence of
the region algorithm lies in admitting jobs and (re)allocating regions. The actual
scheduling decisions then are independent of the regions: at any point in time,
schedule the shortest admitted job that has not completed its processing, i.e.,
schedule admitted jobs in Shortest Processing Time (SPT) order. The algorithm
never explicitly considers deadlines except when deciding whether to admit jobs.

146 L. Chen et al.

The region algorithm starts by admitting job 1 at its release date and creating
the region R(1) := [r1, r1+αp1). Two events – the release of a job and the end of
a region– trigger the region preemption subroutine. This subroutine compares
the processing time of the smallest available job i with the processing time of
the admitted job k whose region contains t. If pi < βpk, job i is admitted and the
region algorithm reserves the interval [t, t + αpi) for processing i. Since regions
must be disjoint, the algorithm then modifies all other remaining regions, i.e.,
the parts of regions that belong to [t,∞) of other jobs j. We refer to the set of
such jobs j whose regions have not yet completed by time t as J(t). Intuitively,
we preempt the interval of the region containing t and delay its remaining part
as well as the remaining regions of all other jobs. Formally, this update of all
remaining regions is defined as follows. Let k be the one job whose region is
interrupted at time t, and let [a′

k, b′
k) be the interval of R(k) containing t. Interval

[a′
k, b′

k) is replaced by [a′
k, t)∪ [t+αpi, b

′
k +αpi). For all other jobs j ∈ J(t)\{k},

the remaining region [a′
j , b

′
j) of j is replaced by [a′

j +αpi, b
′
j +αpi). Observe that,

although the region of a job may change throughout the algorithm, the starting
point of a region for a job will never be changed. See the summary Algorithm1.1.

We apply the region algorithm in different commitment models with different
choices of parameters α and β, which we derive in the following sections. In the
δ-commitment model, δ is given as part of the input. In the other models, i.e.,
without commitment or with commitment upon admission, we simply set δ = ε

2 .
If the region algorithm commits to a job, it does so upon admission, which

is, for our algorithm, the same as its start time. The parameter δ determines the
latest possible start time of a job, which is then for our algorithm also the latest
time the job can be admitted. Thus, for the analysis, the algorithm’s execution
for commitment upon admission (δ = ε

2) is a special case of δ-commitment. This
is true only for our algorithm, not in general.

2.2 Main Results on the Region Algorithm

In the analysis we focus on instances with small slack (0 < ε ≤ 1) as for ε > 1 we
run our algorithm simply by setting ε = 1 and obtain constant competitive ratios.

Without commitment, we give an optimal online algorithm which is an expo-
nential improvement upon a previous result [21] (given for weighted throughput).
For scheduling with commitment, we give the first rigorous upper bound.

Theorem 1 (Scheduling Without Commitment). Let 0 < ε ≤ 1. Choosing
α = 1, β = ε

4 , δ = ε
2 , the region algorithm is Θ(1ε)-competitive for scheduling

without commitment.

Theorem 2 (Scheduling With Commitment). Let 0 < δ < ε ≤ 1. Choos-
ing α = 8

δ , β = δ
4 , the region algorithm is O(ε

(ε−δ)δ2)-competitive in the δ-
commitment model. When the scheduler has to commit upon admission, the
region algorithm has a competitive ratio O(1

ε2) for α = 4
ε and β = ε

8 .

Handling Commitment in Online Throughput Maximization 147

2.3 Interruption Trees

To analyze the performance of the region algorithm, we retrospectively consider
the final schedule and the final regions. Let aj be the admission date of job j
which was not changed while executing the algorithm. Let bj denote the end point
of j’s region. Then, the convex hull of R(j) is given by conv(R(j)) = [aj , bj).

t

Fig. 1. Gantt chart of the regions (left) and the interruption tree (right)

Our analysis crucially relies on understanding the interleaving structure of
the regions that the algorithm constructs. We use a tree or forest in which each
job is represented by one vertex. A job vertex is the child of another vertex if
and only if the region of the latter is interrupted by the first one. The leaves
correspond to jobs with non-interrupted regions. By adding a machine job M
with pM := ∞ and aM = −∞, we can assume that the instance is represented
by a tree which we call interruption tree. This idea is visualized in Fig. 1, where
the vertical arrows indicate the interruption of a region by another job.

Let π(j) denote the parent of j. Let Tj be the subtree of the interruption
tree rooted in job j and let the forest T−j be Tj without its root j. By abusing
notation, we denote the tree/forest as well as its jobs by T∗. A key property of
this tree is that the processing times on a path are geometrically decreasing.

Lemma 1. Let j1, . . . , j� be � jobs on a path in the interruption (sub)tree Tj

rooted in j such that π(ji+1) = ji. Then, pj�
≤ βpj�−1 · · · ≤ β�−1pj1 ≤ β�pj and

the total processing volume is
∑�

i=1 pji
≤ ∑�

i=1 βipj ≤ β
1−β · pj.

3 Successfully Completing Sufficiently Many Jobs

We show that the region algorithm completes sufficiently many jobs among the
admitted jobs on time, when the parameters α, β, and δ are chosen properly.
Scheduling Without Commitment. Let δ = ε

2 for 0 <ε≤ 1.

Theorem 3. Let α = 1 and β = ε
4 . Then the region algorithm completes at

least half of all admitted jobs before their deadline.

The intuition for setting α = 1 and thus reserving regions of minimum size
|R(j)| = pj , for any j, is that, due to the scheduling order SPT, a job is always
prioritized within its own region and, in the model without commitment, a job
does not need to block extra time in the future to ensure the completion of

148 L. Chen et al.

preempted jobs. In order to prove Theorem3, we show that a late job j implies
that the subtree Tj rooted in j contains more finished than unfinished jobs.

Scheduling With Commitment. For both models, commitment at admission
and δ-commitment, we give conditions on the choice of α, β, and δ such that
every admitted job will complete before its deadline. We restrict in the analysis
to the δ-commitment model since the algorithm otherwise runs with δ = ε

2 .

Theorem 4. Let ε, δ > 0 be fixed with δ < ε. If α ≥ 1 and 0 < β < 1 satisfy

α − 1
α

·
(

1 + δ − β

1 − β

)

≥ 1, (1)

any job j admitted by the algorithm at time aj ≤ dj − (1 + δ)pj finishes by dj.

For any admitted jobj, we consider two types of descendants in the interrup-
tion subtree Tj whose regions intersect [aj , dj): (i) jobs k with dj ∈ conv(R(k))
form a path in Tj and, thus, Lemma 1 bounds their total processing volume
from above by β

1−β pj , (ii) jobs k with R(k) ⊂ [aj , dj) reserve an (α−1
α)-fraction

of R(k) for processing j. Thus, a straightforward calculation implies Theorem4.

4 Competitiveness: Admission of Sufficiently Many Jobs

Theorem 5. The number of jobs that an optimal (offline) algorithm can com-
plete on time is by at most a multiplicative factor λ + 1 larger than the number
of jobs admitted by the region algorithm, where λ := ε

ε−δ
α
β , for 0 < δ < ε ≤ 1.

To prove the theorem, we fix an instance and an optimal offline algorithm
Opt. Let X be the set of jobs that Opt scheduled and the region algorithm
did not admit. We can assume that Opt completes all jobs in X on time. Let J
denote the jobs that the region algorithm admitted. Then, X ∪ J is a superset
of the jobs scheduled by Opt. Thus, showing |X| ≤ λ|J | implies Theorem 5.

To this end, we develop a charging procedure that assigns each job in X
to a unique job in J such that each job j ∈ J is assigned at most λ = ε

ε−δ
α
β

jobs. For a job j ∈ J admitted by the region algorithm we define the subset
Xj ⊂ X based on release dates. Then, we inductively transform the laminar
family (Xj)j∈J into a partition (Yj)j∈J of X with |Yj | ≤ λ for all j ∈ J in the
proof of Lemma 2, starting with the leaves in the interruption tree as base case
(Appendix, Lemma 4). For the construction of (Yj)j∈J , we heavily rely on the
key property (Volume Lemma 3) and Corollary 1.

More precisely, for a job j ∈ J let Xj be the set of jobs x ∈ X that were
released in the interval [aj , bj) and satisfy px < βpπ(j). Let XS

j := {x ∈ Xj :
px < βpj} and XB

j := Xj \ XS
j denote the small and the big jobs, respectively,

in Xj . Recall that [aj , bj) is the convex hull of the region R(j) of job j and that it
includes the convex hulls of the regions of all descendants of j in the interruption
tree, i.e., jobs in Tj . In particular, Xk ⊂ Xj if k ∈ Tj .

Handling Commitment in Online Throughput Maximization 149

Observation 1

1. Any job x ∈ X that is scheduled by Opt and that is not admitted by the region
algorithm is released within the region of some job j ∈ J , i.e.,

⋃
j∈J Xj = X.

2. As the region algorithm admits any job that is small w.r.t. j and released in
R(j), it holds that XS

j =
⋃

k:π(k)=j Xk.

Recall that M denotes the machine job. By Observation 1, X = XS
M and,

thus, it suffices to show that |XS
M | ≤ λ|J |. In fact, we show a stronger statement

for each job j ∈ J . The number of small jobs in Xj is bounded by λτj where τj

is the number of descendants of j in the interruption tree, i.e., τj := |T−j |.
Lemma 2. For all j ∈ J ∪ {M}, |XS

j | ≤ λτj.

A proof sketch can be found in the appendix. We highlight the main steps
here. The fine-grained definition of the sets Xj in terms of the release dates and
the processing times allows us to show that any job j with |Xj | > (τj + 1)λ
has siblings j1, . . . , jk such that |Xj | +

∑k
i=1 |Xji

| ≤ λ(τj + 1 +
∑k

i=1(τji
+ 1)).

We call i and j siblings if they have the same parent in the interruption tree.
Simultaneously applying this charging idea to all descendants of a job h already
proves |XS

h | ≤ λτh as XS
h =

⋃
j:π(j)=h Xj by Observation 1.

We prove that this “balancing” of Xj between jobs only happens between
siblings j1, . . . , jk with the property that bji

= aji+1 for 1 ≤ i < k. We call such
a set of jobs a string of jobs. The ellipses in Fig. 1 visualize the maximal strings
of jobs. A job j is isolated if bi
= aj and bj
= ai for all children i
= j of π(j).

The next (technical) lemma is a key ingredient for the “balancing” of Xj

between a string of jobs. For any subset of J , we index the jobs in order of
increasing admission points aj . Conversely, for a subset of X, we order the jobs
in increasing order of completion times, C∗

x, in the optimal schedule.

Lemma 3 (Volume Lemma). Let f, . . . , g ∈ J be jobs with a common parent
in the interruption tree. Let x ∈ ⋃g

j=f Xj such that

g∑

j=f

∑

y∈Xj :C∗
y ≤C∗

x

py ≥ ε

ε − δ
(bg − af) + px. (V)

Then, px ≥ βpj∗ , where j∗ ∈ J ∪ {M} is the job whose region contains bg.

The next corollary follows directly from the Volume Lemma applied to a
string of jobs or to a single job j ∈ J (let f = j = g). To see this, recall that Xj

contains only jobs that are small w.r.t. π(j), i.e., all x ∈ Xj satisfy px < βpπ(j).

Corollary 1. Let {f, . . . , g} ⊂ J be a string of jobs and let x ∈ ⋃g
j=f Xj satisfy

(V). Then, the interruption tree contains a sibling j∗ of g with bg = aj∗ .

150 L. Chen et al.

The main part of the proof of Lemma2 is to show (V) for a string of jobs only
relying on

∑g
j=f |Xj | > λ

∑g
j=f (τj + 1). Then, Corollary 1 allows us to charge

the “excess” jobs to a subsequent sibling g + 1. The relation between processing
volume and size of job sets is possible due to the definition of Xj based on Tj .

Proof of Theorem 5. The job set scheduled by Opt clearly is a subset of
X ∪ J , the union of jobs only scheduled by Opt and the jobs admitted by the
region algorithm. Thus, it suffices to prove that |X| ≤ λ|J |. By Observation 1,
|XS

M | ≤ λ|J | implies |X| ≤ λ|J |. This holds by applying Lemma2 to the machine
job M . ��

Finalizing the Proofs of Theorems 1 and 2

Proof of Theorem 1. Set α = 1 and β = ε
4 . By Theorem 3 at least half of all

admitted jobs complete on time. Theorem5 implies the competitive ratio 16/ε. ��
Proof of Theorem 2. Theorem 4, α = 8

δ and β = δ
4 imply that the algo-

rithm completes all admitted jobs. Theorem 5 implies the competitive ratio
32/((ε−δ)δ2+1). ��

5 Lower Bounds on the Competitive Ratio

Theorem 6 (Scheduling Without Commitment). Every deterministic
online algorithm has a competitive ratio Ω(1ε).

Theorem 7 (Commitment Upon Arrival). No randomized online algorithm
has a bounded competitive ratio for commitment upon arrival.

Theorem 8 (δ-Commitment). Consider weighted jobs in the δ-commitment
model. For any δ > 0 and ε with δ ≤ ε < 1+δ, no deterministic online algorithm
has a bounded competitive ratio.

In particular, there is no bounded competitive ratio possible for ε ∈ (0, 1). A
restriction for ε appears to be necessary as Azar et al. [2] provide an upper bound
for sufficiently large slackness, i.e., ε > 3. We answer affirmatively the open
question in [2] if high slackness is indeed required. Again, this strong impossibility
result clearly separates the weighted and the unweighted problem as we show in
the unweighted setting a bounded competitive ratio for any ε > 0 (Theorem 2).

6 Concluding Remarks

We provide a general framework for online scheduling of deadline-sensitive jobs
with and without commitment. This is the first unifying approach and we believe
that it captures well (using parameters) the key design principles needed when
scheduling online, deadline-sensitive, and with commitment. Some gaps between
upper and lower bounds remain and, clearly, it would be interesting to close
them. In fact, the lower bound comes from scheduling without commitment and
it is unclear, if scheduling with commitment is truly harder than without. It is

Handling Commitment in Online Throughput Maximization 151

somewhat surprising that essentially the same algorithm performs well for both
commitment models, commitment upon admission and δ-commitment, whereas
a close relation between the models does not seem immediate. It remains open
if an algorithm can exploit the seemingly greater flexibility of δ-commitment.

Our focus on unit-weight jobs is justified by strong impossibility results
(Theorem 7, 8, [2,21,25]). Thus, for weighted throughput a rethinking of the
model is needed. A major difficulty seems to be the interleaving structure of
time intervals as special structures (laminar or agreeable intervals) have been
proven to be substantially better tractable in related research [8,9].

Finally, while we close the problem of scheduling unweighted jobs without
commitment with a best-achievable competitive ratio Θ(1ε), it remains open
if the weighted setting is indeed harder than the unweighted setting or if the
upper bound O(1

ε2) in [21] can be improved. Future research on generalizations
to multi-processors seems highly relevant. We believe that our general framework
is a promising starting point.

A Appendix

Lemma 4. Let {f, . . . , g} ⊂ J be jobs at maximal distance from M such that
∑i

j=f |Xj | > λ(i + 1 − f) holds for all f ≤ i ≤ g. If g is the last such job, there

is a sibling j∗ of g with bg = aj∗ and
∑j∗

j=f |Xj | ≤ λ(j∗ + 1 − f).

Proof (Sketch). Observe that [af , bg) =
⋃k

j=f R(g) because the leaves f, . . . , g

form a string of jobs. Thus, by showing that there is a job x ∈ Xg
f :=

⋃g
j=f Xj

satisfying (V), we prove the lemma with the Volume Lemma. We show that for
every job f ≤ j ≤ g there is a set Yj such that the processing volume of Yj

covers the interval [aj , bj) at least ε
ε−δ times. More precisely, Yf , . . . , Yg satisfy

(i)
⋃g

j=f
Yj ⊂ Xg

f , (ii) |Yj | = λ, (iii)Yj ⊂ {x ∈ Xg
f
: px ≥ βpj} for f ≤ j ≤ g.

Then, (ii) and (iii) imply
∑

y∈Yj
py ≥ λβpj = ε

ε−δ (bj −aj). Thus, if x /∈ ⋃g
j=f Yj

and x is among those jobs in Xg
f that Opt completes last, (V) is satisfied. We first

describe how to find Yf , . . . , Yg before we show that these sets satisfy (i) to (iii).
By assumption, |Xf | > λ. Index the jobs in Xf = {x1, . . . , xλ, xλ+1, . . .} in

increasing completion times C∗
x. Define Yf := {x1, . . . , xλ} and Lf := Xf\Yf . Let

Yf , . . . , Yj and Lj be defined for f < j + 1 ≤ g. By assumption, |Xj+1 ∪ Lj | >
λ since |Yi| = λ for f ≤ i ≤ j. We again index the jobs in Xj+1 ∪ Lj =
{x1, . . . , xλ, xλ+1, . . .} in increasing optimal completion times. Then, Yj+1 :=
{x1, . . . , xλ} and Lj+1 := {xλ+1, . . .}. Since we move jobs only horizontally to
later siblings, we call this procedure Push Forward.

By definition, (i) and (ii) are satisfied. Since f, . . . , g are leaves, the jobs in
Yj ∩ Xj are big w.r.t. j. Thus, it remains to show that the jobs in Lj are big
w.r.t. the next job j + 1. To this end, we assume that the jobs in Yf , . . . , Yj are
big w.r.t. f, . . . , j, respectively. If we find an index f ≤ i(x) ≤ j such that x

as well as the jobs in
⋃j

i=i(x) Yi are released after ai(x) and x completes after

152 L. Chen et al.

every y ∈ ⋃j
i=i(x) Yi, then the Volume Lemma 3 implies that x ∈ Lj is big

w.r.t. j + 1. Indeed, then
∑j

i=i(x)

∑
y∈Xi:C

∗
y ≤C∗

x
py ≥ px +

∑j
i=i(x)

∑
y∈Yi

py ≥
ε

ε−δ (bj − ai(x)) + px. By induction, we show the existence of such an index i(x).
By the same argumentation for j = g, Corollary 1 implies the lemma. ��

Lemma 2. For all j ∈ J ∪ {M}, |XS
j | ≤ λτj.

Proof (Sketch). Recall that Tj is the subtree of the interruption tree rooted
in j ∈ J while the forest T−j is Tj without its root j. We show that for all
j ∈ J ∪ {M} there exists a partition (Yk)k∈T−j

with

(i)
⋃

k∈T−j
Yk = XS

j , (ii)Yk ⊂ {x ∈ Xj : px ≥ βpk}, (iii) |Yk| ≤ λ for k ∈ T−j .

Then, |XS
j | = |⋃k∈T−j

Yk| =
∑

k∈T−j
|Yk| ≤ τjλ and, thus, the lemma follows.

The proof consists of an outer and an inner induction. The outer induction
is on the distance ϕ(j) of a job j from machine job M , i.e., ϕ(M) := 0 and
ϕ(j) := ϕ(π(j)) + 1 for j ∈ J . Let ϕmax := max{ϕ(i) : i ∈ J}. The inner
induction uses the idea about pushing jobs x ∈ Xj to some later sibling of j in
the same string of jobs (see proof of Lemma 4).

Let j ∈ J with ϕ(j) = ϕmax − 1. By Observation 1, XS
j =

⋃
k:π(k)=j Xk,

where all k ∈ T−j are leaves at distance ϕmax from M . To define Yk for k ∈ T−j

satisfying (i) to (iii), we distinguish three cases:
Case 1. If k ∈ T−j is isolated, |Xk| ≤ λ follows directly from the Volume

Lemma as otherwise
∑

x∈Xk
px ≥ λβpk + px = ε

ε−δ (bk − ak) + px contradicts
Corollary 1, where x ∈ Xk is the last job that Opt completes from the set Xk.
Since all jobs in Xk are big w.r.t. k, we set Yk := Xk.

Case 2. For k ∈ T−j with |Xk| > λ, we find Yf , . . . , Yg with Lemma 4 and
set Yg+1 := Xg+1 ∪ Lg where f ≤ k ≤ g (maximal) satisfy Lemma 2.

Case 3. Consider jobs k in a string with |Xk| ≤ λ without siblings f, . . . , g
in the same string with bg = ak and

∑g
i=f |Xj | > (g − f)λ. This means that

such jobs do not receive jobs x ∈ Xi for i
= k by the Push Forward procedure
in Case 2. For such k ∈ T−j we define Yk := Xk as in Case 1.

Then, XS
j =

⋃
k∈T−j

Xk =
⋃

k∈T−j
Yk and, thus, (i) to (iii) are satisfied.

We use induction to extend the claim for ϕ = ϕmax to all 0 ≤ ϕ ≤ ϕmax.
Let ϕ < ϕmax such that (Yk)k∈T−j

satisfying (i) to (iii) exists for all j ∈ J with
ϕ(j) ≥ ϕ. Fix j ∈ J with ϕ(j) = ϕ−1. By induction and Observation 1, it holds
that XS

j =
⋃

k:π(k)=j

(
XB

k ∪ ⋃
i∈T−k

Yi

)
. Now, we use the partitions (Yi)i∈T−k

for k with π(k) = j as starting point to find the partition (Yk)k∈T−j
. We fix k

with π(k) = j and distinguish similar three cases as in the base case:
Case 1. If k is isolated, we show that |Xk| ≤ (τk + 1)λ and develop a

procedure to find (Yi)i∈Tk
.

By induction, |XS
k | ≤ τkλ. In the full version of the paper, we prove that

|XB
k | ≤ λ + (τkλ − |XS

k |). To construct (Yi)i∈Tk
, we assign min{λ, |XB

k |} jobs
from XB

k to Yk. If |XB
k | > λ, distribute the remaining jobs according to λ − |Yi|

among the descendants of k. Then, Xk =
⋃

i∈Tk
Yi. Because a job that is big

w.r.t job k is also big w.r.t. all descendants of k, every (new) set Yi satisfies

Handling Commitment in Online Throughput Maximization 153

(ii) and (iii). We refer to this procedure as Push Down since jobs are shifted
vertically to descendants.

Case 2. If |Xk| > (τk +1)λ, k must belong to a string with similar properties
as in Lemma 4, i.e., there is a maximal string of jobs f, . . . , g containing k such
that

∑i
j=f |Xj | > λ

∑i
j=f τj for f ≤ i ≤ g and bj = aj+1 for f ≤ j < g.

If the Volume Condition (V) is satisfied, there exists another sibling g + 1
that balances the sets Xf , . . . , Xg,Xg+1 due to Corollary 1. This is shown by
using Push Down within a generalization of the Push Forward procedure.
As the jobs f, . . . , g may have descendants, we use Push Forward to construct
the sets Zf , . . . , Zg and Lf , . . . , Lg with |Zk| = λ(τk + 1). Then, we apply Push
Down to Zk and (Yi)i∈T−k

in order to obtain (Yi)i∈Tk
such that they will satisfy

Zk =
⋃

i∈Tk
Yi, Yi ⊂ {x ∈ Xj : px ≥ βpi}, and |Yi| = λ for i ∈ Tk. Thus, the

sets Xf , . . . , Xg satisfy (V) and we can apply Corollary 1.
Case 3. Any job k with π(k) = j that was not yet considered as part

of a string must satisfy |Xk| ≤ (τk + 1)λ. We use Push Down of Case 1 to
get (Yi)i∈Tk

. Hence, we have found (Yk)k∈T−j
with the properties (i) to (iii). ��

References

1. Agrawal, K., Li, J., Lu, K., Moseley, B.: Scheduling parallelizable jobs online to
maximize throughput. In: Bender, M.A., Farach-Colton, M., Mosteiro, M.A. (eds.)
LATIN 2018. LNCS, vol. 10807, pp. 755–776. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-77404-6 55

2. Azar, Y., Kalp-Shaltiel, I., Lucier, B., Menache, I., Naor, J., Yaniv, J.: Truthful
online scheduling with commitments. In: Proceedings of the ACM Symposium on
Economics and Computations (EC), pp. 715–732 (2015)

3. Bansal, N., Chan, H.-L., Pruhs, K.: Competitive algorithms for due date schedul-
ing. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS,
vol. 4596, pp. 28–39. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73420-8 5

4. Baruah, S.K., Haritsa, J.R.: Scheduling for overload in real-time systems. IEEE
Trans. Comput. 46(9), 1034–1039 (1997)

5. Baruah, S.K., Haritsa, J.R., Sharma, N.: On-line scheduling to maximize task
completions. In: Proceedings of the IEEE Real-Time Systems Symposium (RTSS),
pp. 228–236 (1994)

6. Baruah, S.K., et al.: On the competitiveness of on-line real-time task scheduling.
Real-Time Syst. 4(2), 125–144 (1992)

7. Canetti, R., Irani, S.: Bounding the power of preemption in randomized scheduling.
SIAM J. Comput. 27(4), 993–1015 (1998)

8. Chen, L., Megow, N., Schewior, K.: An O(log m)-competitive algorithm for online
machine minimization. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 155–163 (2016)

9. Chen, L., Megow, N., Schewior, K.: The power of migration in online machine min-
imization. In: Proceedings of the ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), pp. 175–184 (2016)

10. DasGupta, B., Palis, M.A.: Online real-time preemptive scheduling of jobs with
deadlines. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 96–107. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44436-
X 11

https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-319-77404-6_55
https://doi.org/10.1007/978-3-540-73420-8_5
https://doi.org/10.1007/978-3-540-73420-8_5
https://doi.org/10.1007/3-540-44436-X_11
https://doi.org/10.1007/3-540-44436-X_11

154 L. Chen et al.

11. Ferguson, A.D., Bod́ık, P., Kandula, S., Boutin, E., Fonseca, R.: Jockey: guaranteed
job latency in data parallel clusters. In: Proceedings of the European Conference
on Computer Systems (EuroSys), pp. 99–112 (2012)

12. Garay, J.A., Naor, J., Yener, B., Zhao, P.: On-line admission control and packet
scheduling with interleaving. In: Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), pp. 94–103 (2002)

13. Georgiadis, L., Guérin, R., Parekh, A.K.: Optimal multiplexing on a single link:
delay and buffer requirements. IEEE Trans. Inf. Theory 43(5), 1518–1535 (1997)

14. Goldwasser, M.H.: Patience is a virtue: the effect of slack on competitiveness for
admission control. In: Proceedings of the ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 396–405 (1999)

15. Im, S., Moseley, B.: General profit scheduling and the power of migration on het-
erogeneous machines. In: Proceedings of the ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pp. 165–173 (2016)

16. Kalyanasundaram, B., Pruhs, K.: Maximizing job completions online. J. Algo-
rithms 49(1), 63–85 (2003)

17. Koren, G., Shasha, D.E.: MOCA: a multiprocessor on-line competitive algorithm
for real-time system scheduling. Theor. Comput. Sci. 128(1–2), 75–97 (1994)

18. Koren, G., Shasha, D.E.: Dover: an optimal on-line scheduling algorithm for over-
loaded uniprocessor real-time systems. SIAM J. Comput. 24(2), 318–339 (1995)

19. Liebeherr, J., Wrege, D.E., Ferrari, D.: Exact admission control for networks with
a bounded delay service. IEEE/ACM Trans. Netw. 4(6), 885–901 (1996)

20. Lipton, R.: Online interval scheduling. In: Proceedings of the ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pp. 302–311 (1994)

21. Lucier, B., Menache, I., Naor, J., Yaniv, J.: Efficient online scheduling for deadline-
sensitive jobs: extended abstract. In: Proceedings of the ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 305–314 (2013)

22. Pruhs, K., Stein, C.: How to schedule when you have to buy your energy. In: Pro-
ceedings of the International Conference on Approximation Algorithms for Com-
binatorial Optimization Problems (APROX), pp. 352–365 (2010)

23. Schwiegelshohn, C., Schwiegelshohn, U.: The power of migration for online slack
scheduling. In: Proceedings of the European Symposium of Algorithms (ESA), vol.
57, pp. 75:1–75:17 (2016)

24. Woeginger, G.J.: On-line scheduling of jobs with fixed start and end times. Theor.
Comput. Sci. 130(1), 5–16 (1994)

25. Yaniv, J.: Job scheduling mechanisms for cloud computing. Ph.D. thesis, Technion,
Israel (2017)

	A General Framework for Handling Commitment in Online Throughput Maximization
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Previous Results

	2 Our General Framework
	2.1 The Region Algorithm
	2.2 Main Results on the Region Algorithm
	2.3 Interruption Trees

	3 Successfully Completing Sufficiently Many Jobs
	4 Competitiveness: Admission of Sufficiently Many Jobs
	5 Lower Bounds on the Competitive Ratio
	6 Concluding Remarks
	A Appendix
	References

