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AN \bfscrO (log\bfitm )-COMPETITIVE ALGORITHM FOR ONLINE
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Abstract. We consider the online machine minimization problem in which jobs with hard
deadlines arrive online over time at their release dates. The task is to determine a feasible preemptive
schedule on a minimum number of machines. Our main result is a general \scrO (logm)-competitive
algorithm for the online problem, where m is the optimal number of machines used in an offline
solution. This is the first improvement to an intriguing problem in nearly two decades. To date, the
best known result is a \scrO (log(pmax/pmin))-competitive algorithm by Phillips et al. [Optimal time-
critical scheduling via resource augmentation, STOC, 1997] that depends on the ratio of maximum
and minimum job sizes, pmax and pmin. Even for m = 2 no better algorithm was known. Our
algorithm is in this case constant-competitive. When applied to laminar or agreeable instances, our
algorithm achieves a competitive ratio of \scrO (1) even independently of m. The following two key
components lead to our new result. First, we derive a new lower bound on the optimum value that
relates the laxity and the number of jobs with intersecting time windows. Then, we design a new
algorithm that is tailored to this lower bound and balances the delay of jobs by taking the number
of currently running jobs into account.
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1. Introduction. Minimizing resource usage is a key to achieving economic,
environmental, or societal goals. We consider the fundamental problem of minimizing
the number of machines that is necessary for feasibly scheduling jobs with release
dates and hard deadlines. Jobs may be preempted and migrated between machines.
We consider the online variant of this problem in which every job becomes known to
the online algorithm only at its release date. We denote this problem as the online
machine minimization problem. We will show that we may restrict to the semi-online
problem variant in which the online algorithm is given slightly more information,
namely, the optimal number of machines, m, in advance.

In their seminal paper, Phillips et al. [18] presented an algorithm with competitive
ratio \scrO (log(pmax/pmin)), where pmax and pmin denote the maximum and minimum
job processing times. It remained a wide open question whether the problem admits
a constant-competitive online algorithm [18, 20]. It was not even known whether
such an algorithm exists for m = 2. Despite serious efforts within the community, no
significant improvement has been made in nearly two decades [20].

In this paper we present an \scrO (logm)-competitive algorithm for the preemptive
online machine minimization problem. This is the first result that depends only on
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the optimum value, m, instead of other input parameters. Our algorithm is \scrO (1)-
competitive when m is bounded or when all jobs have processing time windows which
are either agreeable or laminar.

1.1. Further related results. The preemptive semi-online machine minimiza-
tion problem, in which the optimal number of machines is known in advance, has been
investigated extensively by Phillips et al. [18]. They showed a general lower bound
of 5/4 and left a huge gap on the upper bound \scrO (log(pmax/pmin)) of the competitive
ratio for the so-called least laxity first (LLF) algorithm. Not surprisingly, they ruled
out that the earliest deadline first (EDF) algorithm may improve on the performance
of LLF by showing a lower bound of \Omega (pmax/pmin).

The nonpreemptive variant of our online problem is quite hopeless. In fact, no
algorithm can achieve a competitive ratio sublinear in the number of jobs [21]. The
nonpreemptive problem with unit processing times was studied in a series of papers [9,
15, 16, 21, 22] and implicitly in the context of energy minimization in [2]. It has
been shown that an optimal online algorithm has the exact competitive ratio of e \approx 
2.72 [2, 9].

There is also a strong lower bound when preemption is allowed but there is no mi-
gration between machines: in this case, no algorithm can achieve a competitive ratio
sublogarithmic in the number of jobs [5]. Nevertheless, there is an \scrO (1)-competitive
algorithm for agreeable instances and the nonpreemptive problem, and there is an
\scrO (logm)-competitive algorithm for laminar instances and the nonmigratory prob-
lem [5].

In a closely related problem variant, an online algorithm is given extra speed to the
given number of machines instead of additional unit-speed machines. The goal is to
find an algorithm that requires the minimum extra speed. This problem seems much
better understood and speedup factors around 2 are known (see [17, 18]). However, the
power of speed is much stronger than that of additional machines since it can be seen to
allow parallel processing of jobs to some extent. None of the algorithms that are known
to perform well for the speed problem, e.g., EDF and LLF, admit an f(m)-competitive
algorithm for any function f for our problem [18]. In addition, when migration is
not allowed, there is an algorithm requiring only constant speed [4] but no algorithm
is f(m)-competitive for any function f for our problem [5]. Notwithstanding, giving
any constant extra speed allows for a constant competitive ratio also for the machine
minimization problem [17].

We also mention that the offline problem, in which all jobs are known in advance,
can be solved optimally in polynomial time if job preemption is allowed [12]. The
solution of the natural linear programming (LP) formulation can be rounded in a
straightforward way by assigning fractionally assigned workload in a round robin
fashion over all machines within a time unit. However, both solutions, the optimum
and the LP solutions, may drastically change under online job arrivals.

Again, the problem complexity increases drastically if preemption is not allowed.
In fact, the problem of deciding whether one machine suffices to schedule all the jobs
nonpreemptively is strongly NP-complete [11]. It is even open whether a constant-
factor approximation exists; a lower bound of 2 - \varepsilon was given in [8]. The currently best
known nonpreemptive algorithm has an approximation factor of\scrO (

\sqrt{} 
(log n)/(log log n))

[7]. Small constant factors were obtained for special cases [8, 23]. However, when the
speed of the machines is slightly increased, then the general problem can also be
approximated within a factor of 2 [13].
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1.2. Our contribution. Our main contribution is a new preemptive online al-
gorithm with a competitive ratio \scrO (logm), where m is the optimum number of ma-
chines. It is the first improvement up the longstanding best-known competitive ratio
of \scrO (log(pmax/pmin)) by Phillips et al. [18]---even for m = 2. Our algorithm is \scrO (1)-
competitive if the optimum value m is bounded. Moreover, the same algorithm has an
\scrO (1)-competitive ratio for two important complementary classes of instances, namely
laminar and agreeable instances---it achieves a ratio of 96 for laminar instances and
176 for agreeable instances.

We first observe that we may restrict ourselves to the semi-online model, in which
an online algorithm is given the optimum number of machines m in advance. Fur-
thermore, we show that jobs with a small processing time relative to the entire time
window (``loose"" jobs) are easy to schedule. The difficult task is to schedule ``tight""
jobs.

The two key components that lead to our new result are a new lower bound on the
optimum offline solution m and a new sophisticated delaying scheme for processing
jobs. Our lower bound is tailored to ``tight"" jobs only. While more standard bounds
rely on the load in a given interval, we relate, for a given set of time intervals, the
number of jobs with intersecting time windows in these intervals to the fraction that
the laxity of those jobs takes of the total interval. The laxity of a job is (informally)
the maximum amount of time that a job can be delayed without violating the deadline.
For a given optimum value m, our new lower bound construction actually gives an
upper bound on the number of jobs with intersecting time intervals, which is how we
utilize the result.

To get some intuition for our algorithm, we interpret the laxity of a job as the
maximum budget for delaying a job. Whenever a job is not processing (during its
feasible time window), its budget is charged by the amount of this delay. Taking this
viewpoint, the well-known algorithm LLF is the algorithm that gives priority to the
jobs with the smallest remaining budgets. Such a naive charging scheme does not give
any good bound for general instances [18]. It may seem promising that LLF performs
much better when restricted to ``tight"" jobs. However, this turns out to be not the
case as we show LLF does not achieve a competitive ratio of f(m) for any function f
even for instances consisting of only ``tight"" jobs. The reason for failing is that LLF
considers only the absolute remaining laxity and ignores the total size of jobs and
the amount of time they have spent already in the system. In particular, a huge job
with huge laxity will be delayed until it is too late while batches of smaller jobs with
smaller laxity arrive.

To overcome this problem, we need a more balanced scheme for decreasing the
laxity or, equivalently, for using the budget for not-processing a job. Driven by the
new lower bound, we design an algorithm that balances the delays of jobs by taking
the number of jobs with intersecting intervals into account. We openm\prime = \scrO (m logm)
machines and partition the total budget for not-processing a job (i.e., its laxity) into
m\prime +1 ``sub-budgets"". The ith ``sub-budget"" can be accessed only at time points when
i  - 1 jobs are already being processed. We consider the available jobs in decreasing
order of release date and process those with an empty corresponding sub-budget. All
other jobs pay for not being processed from their corresponding ``sub-budgets"". Our
main analysis is concerned with relating the algorithm then to the lower bound.

Very recently, our result was improved to an \scrO (logm/ log logm)-competitive al-
gorithm [1] and subsequently to an \scrO (log logm)-competitive algorithm [14]. The
former result was achieved by optimizing the parameter according to which the jobs
are classified as loose or tight. The latter paper introduced O(log logm) classes of jobs
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between loose and tight jobs, all of which are handled on separate sets of machines
by preferring (in an absolute sense) short jobs. Both papers crucially build on our
algorithm and our analysis, or a parameterized version thereof.

1.3. Outline. In section 2, we define the problem and give general structural
insights, allowing us to restrict ourselves to the semi-online problem of tight jobs. We
derive a new lower bound on the optimum number of machines in section 3. The
description of our new algorithm is in section 4 followed by its analysis in section 5.
Finally, in section 6, we analyze the performance of our algorithm when applied to
agreeable and to laminar instances, respectively.

2. Problem definition and preliminary results.

2.1. Problem definition. Given are a set of jobs where each job j \in \{ 1, 2, . . . , n\} 
has a processing time pj \in \BbbN , a release date rj \in \BbbN which is the earliest possible time
at which the job can be processed, and a deadline dj \in \BbbN by which it must be com-
pleted. The task is to open a minimum number of machines such that there is a
feasible schedule in which no job misses its deadline. In a feasible schedule each job j
is scheduled for pj units of time within the time window [rj , dj). Each opened ma-
chine can process at most one job at any time, and no job is running on multiple
machines at the same time. We allow job preemption; i.e., a job can be preempted
at any moment in time and may resume processing later on the same or on any other
machine.

To evaluate the performance of our online algorithms, we perform a competitive
analysis (see, e.g., [3]). We call an online algorithm \rho -competitive if it requires no more
than \rho \cdot m machines to guarantee a feasible solution for any instance that admits a
feasible schedule on m machines.

2.2. Notation and indexing. For all job parameters (such as release dates,
processing times, etc.) xj , we set xmin := minj xj and xmax := maxj xj , taken over
the entire instance. For a job j, the laxity is defined as \ell j = dj  - rj  - pj . We call a
job \alpha -loose, for some \alpha < 1, if pj \leq \alpha (dj  - rj) and \alpha -tight otherwise. The (processing)
interval of j is I(j) = [rj , dj), and j is said to cover each t \in I(j). For a set of
jobs S, we define I(S) = \cup j\in SI(j). For I = \cup k

i=1[ai, bi) where [a1, b1), . . . , [ak, bk) are

pairwise disjoint, we define the length of I to be | I| =
\sum k

i=1(bi  - ai).
Throughout this paper we assume without loss of generality (w.l.o.g.) that jobs

are indexed in increasing order of release date, and we break ties in decreasing order
of deadline. Hence, for any two jobs j, j\prime with j < j\prime one of these three cases holds:
(i) rj < rj\prime , (ii) rj = rj\prime and dj > dj\prime , or (iii) I(j) = I(j\prime ).

2.3. Characterization of the optimum. Given a finite union of intervals I,
the contribution of a job j to I is C(j, I) := max\{ | I \cap I(j)|  - \ell j , 0\} , i.e., the minimum
processing time that j must receive during I in any feasible schedule. The contribution
of a job set S to I is the sum of the individual contributions of jobs in S, and we denote
it by C(S, I). Clearly, if S admits a feasible schedule on m machines, C(S, I)/| I| must
not exceed m. Interestingly, this bound is tight.

Theorem 1. Let S be a set of jobs. Then S can be feasibly scheduled on m
machines if and only if C(S, I)/| I| \leq m for all finite unions of intervals I.

In the proof, we will make use of the following construction due to Horn [12],
which reduces the problem of deciding the existence of a feasible schedule of S on m
machines to a maximum single-commodity flow problem: We construct a flow network
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NS,m consisting of a directed graph GS,m = (V,A), a source-sink pair s, t \in V , and a
capacity function c : A \rightarrow \BbbN . We define V := \{ s, t\} \cup VS \cup VT , where

VS := \{ uj | j \in S\} and VT := \{ v\vargamma | \vargamma \in \BbbN , rmin \leq \vargamma < dmax\} 

correspond to the job set S and the set of relevant integer time points, respectively.
For each job j \in S, we add unit-capacity edges (uj , vrj ), . . . , (uj , vdj - 1). Furthermore,
for each job j we add an edge (s, uj) with capacity pj , and for each time \vargamma we add an
edge (v\vargamma , t) with capacity m.

We first restate the following result, which was originally proved by Horn [12]
using an LP which implicitly solves the flow problem considered here.

Proposition 2 (Horn [12]). There exists an s-t flow of value
\sum 

j\in S pj in NS,m

if and only if there is a feasible schedule of S on m machines.

Using this property together with the max-flow-min-cut theorem [10] now essen-
tially shows the theorem.

Proof of Theorem 1. It is obvious that, if there is a feasible schedule of S on m
machines, C(S, I) \leq m \cdot | I| for all finite union of intervals I: If there is a feasible
schedule of S on m machines, which schedules a total volume of at most m \cdot | I| 
within I, the contribution of S to I is clearly at most m \cdot | I| .

It remains to show that, if S cannot be scheduled feasibly on m machines, we
have C(S, I \star ) > m \cdot | I \star | for some finite union of intervals I \star . By the assumption,
applying Proposition 2 and the max-flow-min-cut theorem yields that the minimum
s-t cut C \subsetneq V in NS,m is of value less than

\sum 
j\in S pj . By writing the cut value more

explicitly, we get

(1)
\sum 

j:uj\in VS\setminus C

pj +
\sum 

j:uj\in VS\cap C

| N+(vj) \setminus C| +
\sum 

\vargamma :v\vargamma \in VT\cap C

m <
\sum 
j\in S

pj ,

where N+(v) denotes the set of vertices reachable from vertex v in one step. Equiva-
lently, we have \sum 

j:uj\in VS\cap C

pj  - 
\sum 

j:uj\in VS\cap C

| N+(vj) \setminus C| >
\sum 

\vargamma :v\vargamma \in VT\cap C

m.

If we define I \star :=
\bigcup 

\vargamma :v\vargamma \in VT\cap C [\vargamma , \vargamma + 1), we thus get\sum 
j\in S

max\{ pj  - | I(j) \setminus I \star | , 0\} \geq 
\sum 

j:uj\in VS\cap C

pj  - | I(j) \setminus I \star | > m \cdot | I \star | .

Since the left-hand side is exactly C(S, I \star ), the claim follows.

2.4. Reduction to the semi-online problem. We show that we may assume
that the optimum number of machines m is known in advance by losing at most a
factor of 4 in the competitive ratio. To do so, we employ the general idea of doubling
an unknown parameter [6]. More specifically, we open additional machines whenever
the optimum solution has doubled.

Theorem 3. Given a \rho -competitive algorithm for semi-online machine minimiza-
tion, there is a doubling-based algorithm that is 4\rho -competitive for online machine
minimization.
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Towards describing the algorithm, denote by A(m\prime ) the semi-online algorithm A
that is given m\prime as number of machines. Further, denote by m(t) the minimum
number of machines needed to feasibly schedule all jobs released up to time t. Then
our algorithm for the fully online problem is as follows.

Algorithm A\prime : Let t0 := minj rj . For i = 1, 2, . . ., if ti - 1 \not = \infty ,
\bullet let ti := min\{ t | m(t) > 2m(ti - 1)\} \cup \{ \infty \} ;
\bullet all jobs released within \in [ti - 1, ti) are run by Algorithm A(2m(ti - 1)) on a
separate set of machines.

Since the time points t0, t1, . . . as well as m(t0),m(t1), . . . can be computed online
and A is assumed to be an algorithm for the semi-online problem, this procedure can
be executed online. We prove that this algorithm indeed only requires 4\rho m machines
to produce a feasible schedule.

Proof of Theorem 3. For any i such that ti \not = \infty , first note that the set Si of all
jobs released within [t0, ti+1) has a feasible schedule onm(ti+1 - 1) \leq 2m(ti) machines.
Thus, as a subset of Si, also the set S\prime 

i of all jobs released within rj \in [ti, ti+1) has
a feasible schedule on 2m(ti) machines. Consequently, by definition of A, A(2m(ti))
produces a feasible schedule S\prime 

i on 2\rho m(ti) machines.
It remains to compare the number of machines opened by A\prime with the minimum

number of machines m needed to schedule the whole input instance. Let k be maximal
such that tk is defined. Then the total number of machines opened by A\prime is

k\sum 
i=0

2\rho m(ti) \leq 
k\sum 

i=0

2\rho 

2k - i
\cdot m(tk) = 2\rho 

k\sum 
i=0

1

2i
\cdot m(tk) < 4\rho m,

where we use 2m(ti) \leq m(ti+1) for all i \in \{ 0, . . . , k - 1\} in the first step andm(tk) \leq m
in the last step. This concludes the proof.

In the rest of the paper we focus on the semi-online problem.

2.5. Scheduling \bfitalpha -loose jobs. We show that, for any fixed \alpha < 1, \alpha -loose jobs
are easy to handle via a simple greedy algorithm called EDF on m\prime = \rho \cdot m machines
with \rho = \scrO (1). This algorithm schedules at any time m\prime unfinished jobs with the
smallest deadline (or all, if less are available). If there are multiple jobs with the same
deadline, we assume that EDF breaks the tie arbitrarily but consistently over time.

Theorem 4. Let \alpha \in (0, 1). EDF is an 1/(1 - \alpha )2-competitive algorithm for any
instance that consists only of \alpha -loose jobs.

Towards the proof of this theorem, recall that EDF on m\prime machines is a busy algo-
rithm; that is, whenever there are at most m\prime unfinished jobs available, EDF schedules
all of them. Similar to the analysis of EDF in the context of speed augmentation given
in [19], we obtain the following helpful lemma for all busy algorithms. Here, we denote
by W\sansA (t) and W\sansO \sansP \sansT (t) the total workload (released or unreleased) that is remaining
for algorithm A and an arbitrary optimum OPT.

Lemma 5. Consider \alpha \in (0, 1), instances consisting of \alpha -loose jobs, and a busy
online algorithm A using m/(1 - \alpha )2 machines making decisions only at integer time
points. For all t \leq dmax, we have

W\sansA (t) \leq W\sansO \sansP \sansT (t) +
\alpha 

1 - \alpha 
\cdot m \cdot (dmax  - t) .
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Proof. We prove by induction on integer time points. The base is clear be-
cause WA(0) = W\sansO \sansP \sansT (0). Now we assume the statement holds for all t\prime < t and
show it for t. We consider three cases. Note that at least one case occurs, and
possibly more than one occurs.

Case 1: A processes at least m/(1 - \alpha ) jobs at time t. According to the induction
hypothesis, it holds that

(2) W\sansA (t - 1) \leq W\sansO \sansP \sansT (t - 1) +
\alpha 

1 - \alpha 
\cdot m \cdot (dmax  - t+ 1).

Since the optimum can at most finish a workload of m within the time
interval [t, t+1), we get W\sansO \sansP \sansT (t) \geq W\sansO \sansP \sansT (t - 1) - m. For Algorithm A,
it holds that W\sansA (t) \leq W\sansA (t  - 1)  - m/(1  - \alpha ). Inserting the two latter
inequalities into inequality 2 proves the claim.

Case 2: A processes less than m/(1  - \alpha ) jobs at time t, and we have pj(t) \leq 
\alpha (dj  - t) for all unfinished jobs. Again since A is busy and there is an
empty machine at time t, there are less than m/(1 - \alpha ) unfinished jobs.
Then the total remaining processing time of unfinished jobs is bounded
by \alpha \cdot (dmax  - t) \cdot m/(1  - \alpha ). Plugging in the total processing time of
unreleased jobs, which is bounded by W\sansO \sansP \sansT (t), we again get the claim.

Case 3: There exists an unfinished job j with pj(t) > \alpha (dj  - t). Using that j
is \alpha -loose, i.e., pj \leq \alpha (dj  - rj), we get that j has not been processed for
at least (1 - \alpha )(t - rj) time units in the interval [rj , t). As Algorithm A is
busy, this means that all machines are occupied at these times, yielding

W\sansA (t) \leq W\sansA (rj) - (1 - \alpha )(t - rj) \cdot 
m

(1 - \alpha )2

\leq W\sansO \sansP \sansT (rj) +
\alpha 

1 - \alpha 
\cdot m \cdot (dmax  - rj) - (1 - \alpha )(t - rj) \cdot 

m

(1 - \alpha )2

\leq W\sansO \sansP \sansT (rj) +
\alpha 

1 - \alpha 
\cdot m \cdot (dmax  - t) - m \cdot (t - rj),

where the second inequality follows by the induction hypothesis for t =
rj , and the third one follows from elementary transformations. Last, the
feasibility of the optimal schedule implies

W\sansO \sansP \sansT (t) \geq W\sansO \sansP \sansT (rj) - m \cdot (t - rj),

which in turn implies the claim by plugging it into the former inequality.
This completes the proof.

Proving the theorem is now simple.

Proof of Theorem 4. Suppose that EDF using m/(1  - \alpha )2 machines fails on a
feasible instance J . Out of the jobs that EDF fails to schedule, let j \star be the job with
the earliest deadline. Let J \star := \{ j | dj \leq dj \star \} and note that EDF's processing of J \star is
unaffected of the presence of J \setminus J \star . Hence EDF on J \star still fails to meet the deadline
of j \star , allowing us to consider J \star instead of J from now on. Now we apply Lemma 5,
showing W\sansA (dj \star ) \leq W\sansO \sansP \sansT (dj \star ) = 0, meaning that A has finished all of the workload
at time dj \star , and in particular it has finished j \star . Hence, A does not miss the deadline
of j \star ; a contradiction.

We note that Theorem 4 also holds for LLF instead of EDF. The proof can be
extended in the same way as the proof for the upper bound on the speed requirement
of EDF in [19].
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2.6. Scheduling \bfitalpha -tight jobs. In the remaining part of the paper we assume
that all jobs are \alpha -tight for a fixed \alpha \in (0, 1). The good performance of EDF on
\alpha -loose jobs does not apply to instances with \alpha -tight jobs only. In the original lower-
bound instance [19], many very loose jobs, which can be scheduled on one machine,
are used to delay a very tight job. To get a lower-bound instance solely consisting
of tight jobs, we replace the very loose jobs with tight jobs that form a geometric
structure such that they can still be scheduled on a single machine.

Theorem 6. For arbitrary \alpha \in (0, 1) and \alpha -tight jobs, EDF is \Omega (n)-competitive,
even if m = 2.

Proof. We describe an instance in which release dates, deadlines, and processing
times may have rational values, which can be scaled up to make parameters natural
numbers again. Let \alpha \prime > \alpha be rational. We construct n jobs, all released at time 0 such
that EDF fails to feasibly schedule them on n - 1 machines. Among the n jobs, there
are n - 1 jobs forming a geometric structure: The lengths of their intervals are 1/(1 - 
\alpha \prime ), . . . , 1/(1 - \alpha \prime )n - 1, and their respective laxities are 1, 1/(1 - \alpha \prime ), . . . , 1/(1 - \alpha \prime )n - 2.
In addition to these n  - 1 jobs, there is one critical job of 0 laxity and the largest
deadline d (i.e., d > 1/(1  - \alpha \prime )n - 1). Since the critical job has the largest deadline,
EDF decides to postpone it at time 0, and it thus fails to schedule the n jobs on n - 1
machines. Meanwhile, it is easy to verify these jobs can be feasibly scheduled on
two machines since, except for the critical job, the other n  - 1 jobs can be feasibly
scheduled on one machine.

Using a similar idea, we can also lift up the lower bound for LLF from [19] to tight
jobs. This algorithm, given m\prime machines, at any time t schedules m\prime unfinished jobs
j with the smallest current laxity \ell j(t) = dj  - rj  - pj(t), where pj(t) is the remaining
processing time of job j. If only fewer jobs are available, the algorithm schedules all
of them.

Theorem 7. Let \alpha \in (0, 1) be arbitrary. For \alpha -tight jobs, LLF is not f(m)-
competitive for any function f even if m = 2.

In this proof, we again give w.l.o.g. rational instead of natural numbers as job
parameters. The key is the following lemma, which essentially blocks one machine for
a certain period.

Lemma 8. Let c \in \BbbN , \varepsilon \in (0, 1), and \alpha \in (0, 1). Then there is an instance Jc,\varepsilon 
consisting of \alpha -tight jobs and a time t \star with the following properties:
(i) There is a feasible schedule S \star of Jc,\varepsilon on two machines such that pj\prime (t

 \star ) = 0 for
all j\prime \in Jc,\varepsilon .

(ii) At time t \star in LLF given c machines, there is exactly one unfinished job j \in Jc,\varepsilon 
with dj > t \star , and

(3)
\ell j(t

 \star )

dj  - t \star 
\leq \varepsilon .

(iii) Further, no job in Jc,\varepsilon ever gets zero laxity in LLF.

Proof. Assume w.l.o.g. that \varepsilon is rational, and let \alpha \prime > \alpha be rational. The idea
is the following: In S \star , j runs uninterruptedly from 0 through pj =: t \star on the first
of the two machines (pj and dj will be fixed later). In LLF, however, j is delayed
by waves of jobs, which are run on the other machine in S \star . A wave released at
time t of size \beta is defined as follows: There are c jobs released at time t with interval
lengths \beta \cdot (1 - \alpha \prime )c - 1, \beta \cdot (1 - \alpha \prime )c - 2, . . . , \beta and laxities \beta \cdot (1 - \alpha \prime )c, . . . , \beta \cdot (1 - \alpha \prime ).
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Note that, indeed, if \ell j(t) \geq \beta for all t \leq t \star , a wave decreases the laxity of j by \delta (\beta ) :=
\beta \cdot (1  - \alpha \prime )c - 1  - \beta \cdot (1  - \alpha \prime )c > 0 in LLF. It is also easy to verify that a wave can
actually be scheduled on a single machine via EDF.

We now set the parameters of j and the release times of the waves to get proper-
ties (i) and (ii). We set \ell j := 1 and wish to have \ell j(pj) \leq \varepsilon so as to fulfill inequality (3).
To do so, we release \lceil (1  - \varepsilon )/\delta (\varepsilon )\rceil waves of size \varepsilon . Here, we release the next wave
whenever the previous wave is finished in S \star (on one machine via EDF) and in LLF.
If we let pj be the time when the last wave is finished in S \star and LLF, property (i)
follows. Since inequality (3) is fulfilled and all waves are finished by LLF at time t \star ,
Property (ii) also is fulfilled. Note that, indeed, no job in Jc,\varepsilon ever gets zero laxity,
so property (iii) is fulfilled as well.

To prove the theorem, we will now apply the lemma recursively and thereby block
an arbitrary number of machines.

Proof of Theorem 7. Note that the claim actually follows from a stronger version
of Lemma 8: Let c \in \BbbN , \varepsilon \in (0, 1), \alpha \in (0, 1), and k \in \BbbN with k \leq n. Then there
is an instance Jk

c,\varepsilon consisting of \alpha -tight jobs and a critical time t \star with the following
properties:
(i\prime ) There is a feasible schedule S \star of Jk

c,\varepsilon on 2 machines such that pj(t) = 0 for

all j \in Jk
c,\varepsilon .

(ii\prime ) At time t \star in LLF given c machines, there are k different unfinished critical
jobs j \in Jk

c,\varepsilon with identical deadlines dj > t \star and

(4)
\ell j(t

 \star )

dj  - t \star 
\leq \varepsilon .

(iii\prime ) Further, no job in Jk
c,\varepsilon ever gets zero laxity in the LLF schedule.

We prove the claim by induction on k for arbitrary c, \varepsilon , and \alpha . The base case is given
by Lemma 8. To show that Jk

c,\varepsilon as above exists, we first release Jc,\varepsilon \prime for some \varepsilon \prime yet
to be determined, resulting in a critical moment t \star and a critical job j. Then, at t \star ,
we release a scaled-down version of Jk - 1

c - 1,\varepsilon such that the deadlines of its critical jobs
are exactly dj . We set \varepsilon \prime such that j's laxity in LLF is always smaller than that of
each job in Jk - 1

c - 1,\varepsilon , which is possible by Property (iii) of Jk - 1
c - 1,\varepsilon . This means that, in

the LLF schedule, j gets a separate machine from time t \star on, and the claim follows
from this fact and the induction hypothesis for Jk - 1

c - 1,\varepsilon .

The remaining part of the paper is concerned with a more sophisticated algorithm
for \alpha -tight jobs.

3. A lower bound on the optimum. In this section we derive a new lower
bound on m, the offline optimum number of machines. Basic lower bounds for this
problem rely on the total load that can be shown to contribute to a (family of) time
intervals. To obtain our new bound, we restrict now explicitly to \alpha -tight jobs for
some constant \alpha \in (0, 1), i.e., pj > \alpha (dj  - rj) for any job j. This enables us to relate
to the laxity of jobs. The main new ingredient is to take into account the number of
intervals covering the time points in a given set of intervals and relate it to the laxity
of those jobs. This new lower bound might be of independent interest.

In our setting we are given the optimum m. In that case, the new lower bound
allows us to upper bound the number of jobs with intersecting time intervals, which
is how we utilize the result.

We use the following definition.
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Definition 9. Let G be a set of \alpha -tight jobs and let T be a nonempty finite union
of time intervals. For some \mu \in \BbbN and \beta \in (0, 1), a pair (G,T ) is called (\mu , \beta )-critical
if
(i) each t \in T is covered by at least \mu distinct jobs in G,
(ii) | T \cap I(j)| \geq \beta \ell j for any j \in G.

In this section, we show the following theorem.

Theorem 10. If there exists a (\mu , \beta )-critical pair, then m \geq \mu  - 4 - 4\cdot \lceil log 8/\beta \rceil 
8+8/\alpha \cdot \lceil log 8/\beta \rceil =

\Omega ( \mu 
log 1/\beta ).

If m is given, this theorem immediately implies the following upper bound on the
number of jobs covering the relevant intervals.

Corollary 11. If there exists a (\mu , \beta )-critical pair, then \mu = \scrO (m log 1/\beta ).

To show the theorem by contradiction, we consider a (\mu , \beta )-critical pair (G,T ),
and show how to select jobs from G with a total load contribution to some superset
of T that contradicts Theorem 1.

To that end, the following simple lemma will be useful several times. A simple
greedy algorithm finds such a subset. This result is surely folkloric, but as we could
not find a proof, we still provide a proof.

Lemma 12. Let S be a set of jobs. There exists a subset S\prime \subseteq S such that each
time in I(S) is covered by at least one and at most two different jobs in S\prime .

Proof. Given a set of jobs S, we construct S\prime by a simple greedy procedure.
Initially S\prime is an empty set. Whenever there is a time point in I(S) that is not
covered by a job in S\prime , we find the smallest such time point t. Let j \in S be a job
covering t and having the largest deadline. Clearly, such a job exists, and we add j to
S\prime . This procedure continues until each time point in I(S) is covered by a job in S\prime .

By construction, each time point in I(S) is covered by at least one job in S\prime . It
remains to show that each t \in I(S) is covered by at most two jobs in S\prime . For the
sake of contradiction, suppose there are three jobs j1, j2, j3 \in S\prime (added in this order)
covering t, which are added because of the uncovered time points t1 < t2 < t3. As j2
is added after j1, we have dj1 < t2 and therefore, using that t is covered by both j1
and j2, we have t < t2. Using this and the fact that j3 covers t and t3 > t2, j3 also
covers t2. Further it holds that t3 > dj2 , so we have dj3 > dj2 , which is a contradiction
to the fact that j2 (rather than j3) is added by the greedy procedure to cover t2.

Using this simple lemma, we show the first of two important properties of critical
pairs.

Lemma 13. Let (G,T ) be a (\mu , \beta )-critical pair. There exist pairwise disjoint sub-
sets G \star 

1, . . . , G
 \star 
\lfloor \mu /4\rfloor of G such that

(i) T \subseteq I(G \star 
1) \subseteq \cdot \cdot \cdot \subseteq I(G \star 

\lfloor \mu /4\rfloor ),

(ii)
\sum 

j\in G \star 
i
\ell j \leq 4| T | /\beta for every 1 \leq i \leq \lfloor \mu /4\rfloor .

Proof. We first select disjoint subsets G1, . . . , G\lceil \mu /2\rceil of G with a laminar interval
structure, i.e., I(G1) \subseteq \cdot \cdot \cdot \subseteq I(G\lceil \mu /2\rceil ), such that each time point in T is covered
by at least one and at most two distinct jobs from each Gi: starting from i = \lceil \mu /2\rceil ,
the iterative procedure selects a job set Gi from G+

i := G \setminus (Gi+1 \cup \cdot \cdot \cdot \cup G\lceil \mu /2\rceil )
using Lemma 12. To also satisfy (ii), we will later further select certain subsets from
G1, . . . , G\lfloor \mu /2\rfloor .

Before that, we show that indeed T \subseteq I(G1) \subseteq \cdot \cdot \cdot \subseteq I(G\lceil \mu /2\rceil ). First, we

show that I(Gi) \subseteq I(Gi+1) for every i. This follows from the fact that I(G+
1 ) \subseteq 

\cdot \cdot \cdot \subseteq I(G+
\lceil \mu /2\rceil ) (by definition of G+

i ) and I(Gi) = I(G+
i ) for all i (by Lemma 12).
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Second, we show T \subseteq I(G1), i.e., each time point in T is covered by at least one
job in G1. Recall that every time point in T is covered by at least \mu distinct jobs
in G and, according to Lemma 12, covered by at most two distinct jobs in Gi for
every i. Hence, any point in T is covered by at least \mu  - 2(\lceil \mu /2\rceil  - 1) \geq 1 jobs in
G+

1 = G \setminus (G2 \cup \cdot \cdot \cdot \cup G\lceil \mu /2\rceil ), and T \subseteq I(G+
1 ) = I(G1).

Next we apply a counting argument to show an averaging alternative of Condition
(ii). We set G\prime = G1 \cup \cdot \cdot \cdot \cup G\lceil \mu /2\rceil , and note that each time in T is covered by at
most 2\lceil \mu /2\rceil distinct jobs in G\prime because, as shown above, it is covered by at most two
distinct jobs in each Gi. Also using T \subseteq I(G1) \subseteq \cdot \cdot \cdot \subseteq I(G\lceil \mu /2\rceil ), we get

(5) | T | =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigcup 
j\in G\prime 

(T \cap I(j))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \geq 
\sum 

j\in G\prime | T \cap I(j)| 
2\lceil \mu /2\rceil 

\geq 
\sum 

j\in G\prime \beta \ell j

2\lceil \mu /2\rceil 
,

where the last inequality follows from the definition of a (\mu , \beta )-critical pair.
Now we argue that we can further choose G \star 

1, . . . , G
 \star 
\lfloor \mu /4\rfloor from the family of job

sets G1, . . . , G\lceil \mu /2\rceil such that Condition (ii) is true. Suppose there are no such sets,
i.e., we have

\sum 
j\in Gi

\ell j > 4 \cdot | T | /\beta for \lceil \mu /2\rceil  - \lfloor \mu /4\rfloor + 1 \geq \lceil \mu /2\rceil /2 different i. Then
the total laxity of jobs in G\prime is

\sum 
j\in G\prime 

\ell j =

\lceil \mu /2\rceil \sum 
i=1

\sum 
j\in Gi

\ell j >

\biggl( \biggl\lceil 
\mu 

2

\biggr\rceil 
 - 
\biggl\lfloor 
\mu 

4

\biggr\rfloor 
+ 1

\biggr) 
\cdot 4| T | 

\beta 
\geq 2\lceil \mu /2\rceil \cdot | T | 

\beta 
,

which is a contradiction to (5).

The following lemma states that, for arbitrary disjoint sets of \alpha -tight jobs with a
laminar interval structure, the total size of the covered time intervals is geometrically
increasing.

Lemma 14. Let S1, . . . , S\lceil 2m/\alpha \rceil be pairwise disjoint sets of \alpha -tight jobs such that
I(S1) \subseteq \cdot \cdot \cdot \subseteq I(S\lceil 2m/\alpha \rceil ). Then we have | I(S\lceil 2m/\alpha \rceil )| \geq 2| I(S1)| .

Proof. Suppose on the contrary that | I(S\lceil 2m/\alpha \rceil )| < 2| I(S1)| . We will show a
contradiction based on the total contribution of all the jobs to I(S\lceil 2m/\alpha \rceil ). By as-
sumption we have | I(Si)| \geq | I(S1)| > | I(S\lceil 2m/\alpha \rceil )| /2 for all i \in \{ 1, . . . , \lceil 2m/\alpha \rceil \} .
Each of these sets Si consists of \alpha -tight jobs only, i.e., pj > \alpha (dj  - rj) for any j, and
thus, a workload of at least \alpha \cdot | I(Si)| \geq \alpha \cdot | I(S\lceil 2m/\alpha \rceil )| /2 has to be processed within
the interval I(S\lceil 2m/\alpha \rceil ). There are \lceil 2m/\alpha \rceil different such sets Si, and consequently
the total workload that has to be processed within I(S\lceil 2m/\alpha \rceil ) is

C

\left(  \left(  \lceil 2m/\alpha \rceil \bigcup 
i=1

Si

\right)  , I(S\lceil 2m/\alpha \rceil )

\right)  >

\biggl\lceil 
2m

\alpha 

\biggr\rceil 
\cdot 
\alpha \cdot | I(S\lceil 2m/\alpha \rceil )| 

2
\geq m \cdot | I(S\lceil 2m/\alpha \rceil )| ,

which is a contradiction to Theorem 1.

We are now ready to prove the main theorem.

Proof of Theorem 10. Let (G,T ) be a (\mu , \beta )-critical pair. Let G \star 
1, . . . , G

 \star 
\lfloor \mu /4\rfloor be

subsets of G that satisfy the two conditions of Lemma 13, i.e., (i) T \subseteq I(G \star 
1) \subseteq \cdot \cdot \cdot \subseteq 

I(G \star 
\lfloor \mu /4\rfloor ) and (ii)

\sum 
j\in G \star 

i
\ell j \leq 4| T | /\beta , for all i \in \{ 1, . . . , \lfloor \mu /4\rfloor \} . The proof idea is

to bound the contribution of certain subsets G \star 
q , . . . , G

 \star 
\lfloor \mu /4\rfloor to the interval I(G \star 

q) and
show the bound on m by achieving a contradiction to the load bound in Theorem 1.
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In the following, we will fix k := \lceil log 8/\beta \rceil and q := \lceil 2m/\alpha \rceil \cdot k, and we distinguish
two cases. If G \star 

q does not exist, i.e., q > \lfloor \mu /4\rfloor , we obtain

m \geq \alpha (\mu  - 4 - 4k)

8k
>

\mu  - 4 - 4 \cdot \lceil log 8/\beta \rceil 
8 + 8/\alpha \cdot \lceil log 8/\beta \rceil 

as claimed. Otherwise, G \star 
q does exist, and it follows from T \subseteq I(G \star 

1) and repeatedly
applying Lemma 14 that

| I(Gq)| = | I(G \star 
\lceil 2m/\alpha \rceil \cdot k)| \geq 2k| T | .

Now consider any G \star 
i , for i \in \{ 1, . . . , \lfloor \mu /4\rfloor \} . Using property (ii) of the subsets, we

conclude

(6) | I(G \star 
q)| \geq 2k \cdot | T | \geq 2k \cdot \beta 

4
\cdot 
\sum 
j\in G \star 

i

\ell j \geq 2 \cdot 
\sum 
j\in G \star 

i

\ell j ,

where we use k = \lceil log 8/\beta \rceil in the last step.
For i \geq q, the contribution of G \star 

i to I(G \star 
q) can be bounded from below as follows:

C(G \star 
i , I(G

 \star 
q)) =

\sum 
j\in G \star 

i

max\{ 0, | I(G \star 
q) \cap I(j)|  - \ell j\} 

\geq 
\sum 
j\in G \star 

i

\bigl( 
| I(G \star 

q) \cap I(j)|  - \ell j
\bigr) 
\geq 

\bigm| \bigm| \bigm| \bigm| I(G \star 
i ) \cap 

\bigcup 
j\in G \star 

i

I(j)

\bigm| \bigm| \bigm| \bigm|  - \sum 
j\in G \star 

i

\ell j

= | I(G \star 
i ) \cap I(G \star 

q)|  - 
\sum 
j\in G \star 

i

\ell j .

For i \geq q, (6) and I(G \star 
q) \subseteq I(G \star 

i ) imply C(G \star 
i , I(G

 \star 
q)) \geq | I(G \star 

q)| /2.
We now show that m > (\lfloor \mu /4\rfloor  - q)/2. Suppose this is not true. Then \lfloor \mu /4\rfloor \geq 

q + 2m, and thus, we have at least 2m+ 1 disjoint sets G \star 
i such that C(G \star 

i , I(G
 \star 
q)) \geq 

| I(G \star 
q)| /2. Hence,

C

\left(  \left(  \mu \bigcup 
i=q

G \star 
i

\right)  , I(G \star 
q)

\right)  \geq (2m+ 1) \cdot 
| I(G \star 

q)| 
2

> m \cdot | I(G \star 
q)| .

This is a contradiction to Theorem 1. We conclude by noting that indeed

m \geq \mu  - 4 - 4 \cdot \lceil log 8/\beta \rceil 
8 + 8/\alpha \cdot \lceil log 8/\beta \rceil 

,

using m > (\lfloor \mu /4\rfloor  - q)/2 and our choice of q = \lceil 2m/\alpha \rceil \cdot k = \lceil 2m/\alpha \rceil \cdot \lceil log 8/\beta \rceil .
We will utilize Theorem 10 to construct an \scrO (logm)-competitive algorithm. To

show that this algorithm is\scrO (1)-competitive for the special cases (laminar or agreeable
instances), we use a slightly weaker definition of a (\mu , \beta )-critical pair. We replace the
job-individual Condition (ii) in Definition 9 by an averaging condition.

Definition 15. Let G be a set of \alpha -tight jobs and let T be a nonempty finite
union of time intervals. For some \mu \in \BbbN and \beta \in (0, 1), a pair (G,T ) is called weakly
(\mu , \beta )-critical if
(i) each t \in T is covered by at least \mu distinct jobs in G,
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(ii) | T | \geq \beta /\mu \cdot 
\sum 

j\in G \ell j.

It is easy to verify that the proofs above apply also to weakly (\mu , \beta )-critical pairs.
(Indeed, the only difference is that we do not need the counting argument to obtain
inequality (5) in the proof of Lemma 13.) Hence, we have the following theorem.

Theorem 16. If there exists a weakly (\mu , \beta )-critical pair, then m = \Omega ( \mu 
log 1/\beta ).

4. Description of the algorithm. We assume that the optimum number of
machines m is known in advance and every job is \alpha -tight. We open m\prime machines and
will choose m\prime later appropriately as a function of m.

The idea for our algorithm is the following. We view the laxity of a job as the
budget for delaying it. Whenever a job is delayed for some time, then we pay this
delay from its budget. If the budget is empty, we must process the job. Greedily
decreasing the budget, as LLF does, fails. Instead, we aim at balancing the decrease
of the budget by taking the number of currently processing jobs into account. To
that end, we partition the total budget of each job into m\prime + 1 equal-size smaller
budgets, numbered from 1 to m\prime +1. That is, a job j has m\prime +1 budgets, each of size
\ell j/(m

\prime +1). The ith budget of a job is reserved for time points when i - 1 other jobs
(with larger index) are being processed, which means that their corresponding 1st,
2nd, . . ., (i - 1)th budgets have become 0. Once i - 1 such jobs are already running
and the currently considered job has an empty ith budget, then we process this job
even if its other budgets are not empty.

We now describe our algorithm in detail. Figure 1 gives an illustration. At a
time t, we consider all jobs with a time window covering t and call them relevant jobs
at t. We must decide which jobs to process and which jobs to delay/preempt. We
call the jobs that are processed at time t active jobs at time t and denote them by
a1(t), a2(t), . . . .

At any computation time t, which we will specify later, we consider all relevant
jobs at t in reverse order of their indices, i.e., in decreasing order of release dates.
One after the other, we inspect the 1st budget of each of these jobs. As long as it is
positive, we do not process the corresponding job and charge its 1st budget by the time
duration until the next computation time. Once we find a job whose 1st budget is 0,
this job becomes the first active job a1(t), and each of its budgets remains unchanged
until the next computation time. We continue considering jobs in the reverse order of
indices, i.e., we consider jobs with index smaller than a1(t). Now, we inspect the 2nd

decreasing
in index

j

rj dj

t

1-st budget positive,
charge it and preempt

1-st budget empty, process

2-nd budget positive,
charge it and preempt

2-nd budget empty, process

.

.

.

Fig. 1. Illustration of our algorithm. At time t, we consider all relevant jobs in reverse order
of their indices. After having found i active jobs, we check the (i+1)th budget of the current job. If
this budget is not empty, we charge it and preempt/delay the job; otherwise the job becomes active.
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budget of jobs (instead of the 1st budget; because we have one active job). As long
as the 2nd budgets are nonempty we delay the jobs and charge their 2nd budgets;
once we find a job with an empty 2nd budget, this job becomes the second active job
a2(t). Then we continue with verifying the 3rd budgets, etc.

The computation times for our algorithm are release dates, deadlines, and time
points at which the remaining budget of some job becomes 0. Since the number of
budgets per job is m\prime + 1, our algorithm has a polynomial running time if the chosen
number of machines m\prime is polynomial.

If we ever find an (m\prime +1)th active job, we say that our algorithm fails. We will,
however, show that we can choose m\prime such that the algorithm never fails.

5. Analysis of the algorithm for the general case. We prove the following
theorem.

Theorem 17. Our algorithm is \scrO (logm)-competitive.

By definition of our algorithm, a job's total budget never becomes negative, i.e.,
it is preempted no longer than its laxity. So we only have to show that our algorithm
never finds too many active jobs, i.e., it never finds an (m\prime + 1)th active job. To
prove this, we will assume the contrary and will construct a critical pair, from whose
existence the theorem then follows by Corollary 11.

Lemma 18. If our algorithm fails, then there exists a (\mu , 1/\mu )-critical pair where
\mu = m\prime + 1.

Proof. As our algorithm fails, there is some time t \star at which an (m\prime +1)th active
job j \star is found. We construct a (\mu , 1/\mu )-critical pair (F, T ) which, intuitively speaking,
is a minimal subset of jobs still causing the failure. More specifically, we have F = F1\cup 
\cdot \cdot \cdot \cup F\mu as well as T = T1\cup \cdot \cdot \cdot \cup T\mu and, from i = \mu down to i = 1, we define Fi as well as
Ti as follows. We set F\mu := \{ j \star \} and T\mu := \{ t | the \mu th budget of j \star is charged at t\} .
Moreover, for all i = \mu  - 1, . . . , 1, we define

Fi := \{ j | j = ai(t) for some t \in Ti+1 \cup \cdot \cdot \cdot \cup T\mu \} 
and Ti := \{ t | the ith budgetof some j \in Fi is charged at t\} .

We show that (F, T ) is indeed a (\mu , 1/\mu )-critical pair. We first show that con-
dition (i) in Definition 9 is satisfied; i.e., each t in T is covered by \mu different jobs
in F .

By definition of T , for any t \in T there is an i such that t \in Ti. Using the
definition of Ti, there is some job ji \in Fi such that its ith budget is charged at t.
Notice that the ith budget of ji is charged at time t because there are i - 1 active jobs
a1(t), . . . , ai - 1(t), all with larger index than ji and time intervals covering t. Thus,
there are at least i jobs j with j \geq ji that cover t.

We claim that there are at least \mu  - i different jobs j with j < ji that cover t.
Assume this is true, then with the claim above, each t in T is indeed covered by \mu 
different jobs in F .

We now prove the claim by (downward) induction on i. Clearly it holds for i = \mu .
Assume the claim is true for all h = i + 1, . . . , \mu . We now show it for i: According
to the definition of Fi, ji is the ith active job at some t\prime \in Tk for k > i, where t < t\prime 

because the remaining ith budget of ji at t is still positive, whereas it becomes 0
at t\prime . By the definition of Tk, there also exists a job jk \in Fk whose kth budget is
charged at time t\prime . We apply the induction hypothesis for k to obtain that there are
\mu  - k different jobs j with j < jk < ji covering t\prime . As j < ji implies rj \leq rji and we
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have t < t\prime , all these \mu  - k jobs also cover t. Similarly jk also satisfies jk < ji and
covers t\prime , so it covers t, too. To finish the proof of the claim, we show that there are
k  - i  - 1 different jobs j with jk < j < ji that cover t. As the kth budget of jk is
charged at time t\prime , there must exist active jobs ai+1(t

\prime ), . . . , ak - 1(t
\prime ), each of which

covers time t\prime , and we have jk < ah(t
\prime ) < ji for all h \in \{ i+1, . . . , k - 1\} . Again using

rah(t\prime ) \leq rji \leq t \leq t\prime , all of these k  - i - 1 jobs cover time t. Hence in total there are
\mu  - i different jobs j with j < ji that cover t. We conclude that each t in T is indeed
covered by \mu different jobs in F .

Finally, we show that also the second property of a (\mu , 1/\mu )-critical pair is fulfilled
by (F, T ). Indeed, | T \cap I(j)| > \ell j/\mu holds for each j \in F : By definition, there is an
i such that j \in Fi, and thus j is an ith active job at some time t. As the ith budget
(which initially amounted to \ell j/\mu ) is exhausted at time t, it follows by definition of
Ti that | Ti \cap I(j)| \geq \ell j/\mu , and the lemma follows.

We are now ready to prove the main theorem.

Proof of Theorem 17. We show that our algorithm never fails, i.e., it never finds
an (m\prime + 1)st active job, when using m\prime = \scrO (m logm) machines. This is sufficient
for proving the theorem, as the algorithm opens m\prime machines and processes at any
time the active jobs. All other jobs have a positive corresponding budget and get
preempted/delayed. No job is preempted/delayed for more time than its total laxity
(budget).

We assume that the algorithm fails, which implies the existence of a (\mu , 1/\mu )-
critical pair with \mu = m\prime + 1 by Lemma 18. Now, Corollary 11 implies \mu \leq cm log\mu 
for some constant c. Thus, there exists a constant c\prime such that m\prime \leq c\prime m logm\prime , i.e.,
the algorithm fails only if m\prime \leq c\prime m logm\prime . For m\prime sufficiently large, this inequality is
not true. Thus, for m\prime = \scrO (m logm) the algorithm does not fail.

Remark. Careful calculations show that for m = 2, our algorithm opens m\prime = 236
machines for tight jobs (taking \alpha = 4/5). Including loose jobs (Theorem 4) and
applying Theorem 3 when m is not known, our algorithm requires 1044 machines in
total, and is thus 522-competitive for the online machine minimization problem when
m = 2. We remark that we did not optimize the parameters that we choose in the
proofs. For example, in the proof of Theorem 10, a more careful analysis could replace
| I(G \star 

\lceil 2m/\alpha \rceil \cdot k)| \geq 2k| T | by | I(G \star 
\lfloor 2m/\alpha \rfloor \cdot k+1)| \geq 2k| T | , which already leads to a better

ratio of 414 for m = 2.

6. Analysis of the algorithm for special cases. In this section we show
that our algorithm is constant-competitive for two important special cases, namely,
laminar and agreeable instances. In laminar instances, any two jobs j and j\prime with
I(j) \cap I(j\prime ) \not = \emptyset satisfy I(j) \subseteq I(j\prime ) or I(j\prime ) \subseteq I(j). In agreeable instances, rj < rj\prime 

implies dj \leq dj\prime for any two jobs j and j\prime .

Theorem 19. For laminar and agreeable instances, our algorithm has constant
competitive ratio.

Recall that we only consider \alpha -tight jobs. As in the general case, our proof strat-
egy is to construct a (here: weakly) critical failure pair whenever our algorithm finds
a \mu th active job j \star . To prove a constant competitive ratio, however, we use a slightly
different construction in which we drop active jobs with intersecting intervals, and ob-
tain a weakly (\mu , \beta )-critical pair (H,T ) where \beta = 1. This directly implies the theorem
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by Corollary 11.1 In fact, the construction is identical for both special cases. We con-
struct job set H := H1 \cup \cdot \cdot \cdot \cup H\mu and time points T := T1 \cup \cdot \cdot \cdot \cup T\mu by (downward)
inductively defining H\mu := \{ j \star \} , T\mu := \{ t | the \mu th budget of j \star is charged at t\} ,

Fi := \{ j | j = ai(t) for some t \in Ti+1 \cup \cdot \cdot \cdot \cup T\mu \} ,
Hi := \{ j \in Fi | there does not exist j\prime \in Fi

such that I(j) \cap I(j\prime ) \not = \emptyset and j\prime < j\} ,
and Ti := \{ t | the ith budgetof some j \in Hi is charged at t\} 

for all i = \mu  - 1, . . . , 1. Note that the only difference from the construction for the
general case is that for each set Fi we additionally maintain a set Hi \subseteq Fi in which
we keep for any two intersecting intervals in Fi only one. We call (H,T ) the failure
pair.

To make more concise statements about the structure of the constructed pair,
we introduce the notation S1 \prec S2 (or equivalently, S2 \succ S1) for two sets of jobs S1

and S2. Specifically, this means that for every job j2 \in S2 there exists a job j1 \in S1

such that I(j1) \cap I(j2) \not = \emptyset and j1 < j2. Note that \prec is not an order as it does not
necessarily obey transitivity.

The following structural lemma is true for both special cases and will be proven
in subsection 6.1.

Lemma 20. Consider a laminar or agreeable instance, and let (H,T ) be a failure
pair. Then the following statements are true:
(i) For all Hi, Hi\prime with i < i\prime , we have Hi \succ Hi\prime .
(ii) For all Hi, we have T \subseteq I(Hi).

With Lemma 20, we can prove Theorem 19 without using any further structural
information.

Proof of Theorem 19. We show that our algorithm never finds a \mu th active job if
\mu  - 1 = m\prime = cm for a sufficiently large constant c. To this end, assume the contrary
and let (H,T ) be the corresponding failure pair, which we claim to be weakly (\mu , 1)-
critical. Given this claim, the theorem directly follows from Theorem 16.

The first property of a weakly (\mu , 1)-critical pair, that is, that each t \in T is covered
by \mu different jobs in H, is easy to see: By Lemma 20 (ii), there is a job in each Hi

that covers t. Also, all these jobs are distinct: if there exists a job j \in Hi \cap Hi\prime where
i < i\prime , Lemma 20 (i) implies the existence of j\prime \in Hi\prime with j\prime < j and I(j)\cap I(j\prime ) \not = \emptyset .
This would be a contradiction to the construction of (H,T ) as j would not be taken
over from Fi\prime to Hi\prime because j\prime \in Hi\prime , I(j) \cap I(j\prime ) \not = \emptyset , and j\prime < j.

As an intermediate step, we claim that T1, . . . , T\mu are pairwise disjoint. To see
this, suppose there exists some t \in Ti \cap Ti\prime where i < i\prime . By definition of Ti, there
exists a job j \in Hi such that the ith budget of j is charged at t. Similarly, there also
exists some job whose i\prime th budget is charged at t, implying that at time t there exists
an ith active job ai(t) as i < i\prime . We distinguish three cases, each of them yielding a
contradiction:
Case 1: We have ai(t) < j. Note that ai(t) \in Fi by definition of Fi. As t \in 

I(j)\cap I(ai(t)) \not = \emptyset , we get a contradiction as, by definition of Hi, it does not
include j.

1We are dropping constants by writing m = \Omega (\mu / log(1/\beta )) in Theorem 16. The logarithm is
actually taken over 8/\beta instead of 1/\beta (see (6)), and thus, \beta = 1 does not cause a problem in
computation.
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Case 2: We have ai(t) = j. Then the ith budget of j is already exhausted at t, which
is a contradiction to the fact that it is charged at t.

Case 3: We have ai(t) > j. Recall that the algorithm considers jobs one by one in
decreasing order of index. After it found an ith active job ai(t) at t, it will
never check the ith budget of jobs of lower indices. Hence the ith budget of
job j < ai(t) cannot be charged at t.

It remains to show the second property of a weakly (\mu , 1)-critical pair, i.e., we
have | T | \geq 

\sum 
j\in F \ell j/\mu . For each Hi, every j \in Hi is an ith active job at some time

t and thus its ith budget is exhausted at t. Consequently, there are times at which
this budget is charged, implying | Ti \cap I(j)| \geq \ell j/\mu . Using that Hi does not contain
distinct jobs j and j\prime with I(j) \cap I(j\prime ) \not = \emptyset (by definition), we obtain

| Ti| =
\sum 
j\in Hi

| Ti \cap I(j)| \geq 
\sum 
j\in Hi

\ell j
\mu 
.

As T1, . . . , T\mu are pairwise disjoint, by summing up these inequalities for all Hi, we
get

| T | =
\mu \sum 

i=1

| Ti| \geq 
\mu \sum 

i=1

\sum 
j\in Hi

\ell j
\mu 

=
\sum 
j\in H

\ell j
\mu 
,

which concludes the proof.

Remark. Careful calculations show that, when restricted to only \alpha -tight jobs,
the algorithm is (\lceil 8/\alpha \rceil + 4)-competitive for laminar instances, and (\lceil 16/\alpha \rceil + 8)-
competitive for agreeable instances. Note that the factor of two between the ratios
is due to that fact that for laminar instances the Hi's we derive already satisfy a
laminar structure, i.e., I(H1) \subseteq I(H2) \subseteq \cdot \cdot \cdot \subseteq I(H\mu ), while for agreeable instances
we still need to apply Lemma 12 to get such a structure. When additionally handling
loose jobs by EDF (Theorem 4), we derive a 24-competitive algorithm for laminar
instances and a 44-competitive algorithm for agreeable instances if the offline optimum
m is known (by taking \alpha = 1/2). If m is not known, using Theorem 3 we derive a
96-competitive algorithm for laminar instances and a 176-competitive algorithm for
agreeable instances.

6.1. Proof of structural lemma. We will prove Lemma 20 separately for the
laminar instances as well as agreeable instances. Before we separate the analysis
into the two special cases, we state another lemma that is also independent of any
structural information and will be useful in both special cases.

Lemma 21. Let (H,T ) be a failure pair. Then we have Fi \succ Fi+1 for all i \in 
\{ 1, . . . , \mu  - 1\} .

Proof. Consider an arbitrary i \in \{ 1, . . . , \mu  - 1\} . By the definition of Fi, for any
j \in Fi we have j = ai(t) at some time t \in Ti\prime where i\prime > i. We distinguish two cases
and show that in each case there exists a job in Fi+1 with the desired properties:
Case 1: We have i\prime = i + 1. By definition of Ti+1, there is some j\prime \in Hi+1 \subseteq Fi+1

whose (i+1)th budget is charged at time t, implying that t \in I(j)\cap I(j\prime ) \not = \emptyset .
Since the algorithm goes through jobs in decreasing order of indices, it holds
that j\prime < j.

Case 2: We have i\prime > i+ 1. Using the definition of Ti\prime , there is a job j\prime \prime \in Hi\prime \subseteq Fi\prime 

whose i\prime th budget is charged at t, implying the existence of an (i + 1)st
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active job j\prime at time t. By definition of Fi+1, we have j
\prime \in Fi+1. Notice that

t \in I(j)\cap I(j\prime ) \not = \emptyset . As the algorithm goes through jobs in decreasing order
of indices it also follows that j\prime < j.

This completes the proof.

6.1.1. Laminar instances. Before we prove Lemma 20 for the laminar case,
we state a simple observation and show three auxiliary lemmas for laminar instances.
The following observation directly follows from the way that we index jobs and the
laminarity of the instance.

Observation 22. For laminar instances and two jobs j, j\prime , I(j) \cap I(j\prime ) \not = \emptyset and
j > j\prime imply I(j) \subseteq I(j\prime ).

Recall the definition of Hi. Observation 22 actually implies that the set Hi is
constructed by selecting the ``maximal"" jobs from Fi, i.e., the jobs in Fi which are
not included by any other job. The following lemma is also straightforward from the
observation.

Lemma 23. For laminar instances, S1 \succ S2 implies that I(S1) \subseteq I(S2).

Proof. Consider an arbitrary job j \in S1. Due to S1 \succ S2 there exists j\prime \in S2

with j\prime < j and I(j) \cap I(j\prime ) \not = \emptyset . According to Observation 22 we have I(j) \subseteq I(j\prime ),
hence I(S1) \subseteq I(S2).

Using Observation 22, we can also show that the \prec -relation on sets of jobs is
transitive under laminarity.

Lemma 24. For laminar instances, the relation \prec on sets of jobs is transitive.

Proof. Let S1, S2, and S3 such that S1 \succ S2 and S2 \succ S3. We show that also
S1 \succ S3 holds: For any job j1 \in S1, there exists a job j2 \in S2 with j1 > j2 and I(j1)\cap 
I(j2) \not = \emptyset . Further, there is a job j3 \in S3 with j2 > j3 and I(j2)\cap I(j3) \not = \emptyset . Obviously
we have j1 > j3. Further, I(j1) \cap I(j3) \not = \emptyset since according to Observation 22, we
have I(j1) \subseteq I(j2) \subseteq I(j3). Hence, S1 \succ S3.

The third auxiliary lemma allows us to induce the relation among Hi's from the
relation among Fi's, as is shown by Lemma 21.

Lemma 25. Consider a laminar instance and a failure pair (H,T ). Then Fi \succ Fi\prime 

implies Hi \succ Hi\prime .

Proof. Consider some job j \in Hi. By definition of Hi, we also have j \in Fi. Due
to Fi \succ Fi\prime there is a j\prime \in Fi\prime such that j > j\prime and I(j) \cap I(j\prime ) \not = \emptyset . According to the
definition of Hi\prime , there is a job j\prime \prime \in Hi\prime with j\prime \geq j\prime \prime and I(j\prime )\cap I(j\prime \prime ) \not = \emptyset (indeed, job
j\prime \prime could be j\prime ). Consequently, j > j\prime \geq j\prime \prime . By Observation 22, I(j) \subseteq I(j\prime ) \subseteq I(j\prime \prime )
holds, implying that I(j) \cap I(j\prime \prime ) \not = \emptyset . Thus, Hi \succ Hi\prime .

Now we are ready to prove Lemma 20.

Proof of Lemma 20 for laminar instances. We first show (i), i.e., for all Hi, Hi\prime 

with i < i\prime we have Hi \succ Hi\prime . By Lemma 24, it suffices to show Hi \succ Hi+1 for all
i = 1, . . . , \mu  - 1. Using Lemma 25, we can even restrict to showing Fi \succ Fi+1 for all
i = 1, . . . , \mu  - 1. This is exactly the statement of Lemma 21.

It remains to show (ii), i.e., T \subseteq I(Hi) for all Hi. Towards this, we first claim
that, I(Hi) = I(Fi). It is easy to see that I(Hi) \subseteq I(Fi) as Hi \subseteq Fi. Meanwhile,
I(Hi) \supseteq I(Fi): Consider an arbitrary job j \in Fi. By definition of Hi either j \in Hi,
or there exists some j\prime \in Hi such that I(j) \cap I(j\prime ) \not = \emptyset and j > j\prime , implying that
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I(j) \subseteq I(j\prime ) by Observation 22. Notice that by definition T \subseteq I(F1). Hence, we have
T \subseteq I(F1) = I(H1) \subseteq I(Hi), where the last relation follows from (i) and Lemma 23.

6.1.2. Agreeable instances. Recall that

Hi = \{ j \in Fi | there does not exist j\prime \in Fi such that I(j) \cap I(j\prime ) \not = \emptyset and j\prime < j\} .

For agreeable instances, it is easy to see that the job in Fi with the smallest index
(and hence the smallest release date) is always contained in Hi. In the following we
will show that, indeed, this is the only job contained in Hi.

Proof of Lemma 20 for agreeable instances. We first prove (i), i.e., for all Hi and
Hi\prime with i < i\prime we have Hi \succ Hi\prime . To do so, we make the (stronger) claim that, for
every i \in \{ 1, . . . , \mu \} , the following is true: For k \geq i it holds that Hk = \{ jk\} , where
jk is the job of smallest index in Fk. Furthermore, Hk \succ Hk\prime holds for any k, k\prime with
i \leq k < k\prime . We prove this claim by (downward) induction on i. For i = \mu , this claim
is clear from the construction of (H,T ).

For i < \mu , we first prove that Hi consists of the single job ji. To this end, suppose
there are two jobs j, j\prime \in Hi where j < j\prime . By the construction of Hi, it holds that
I(j)\cap I(j\prime ) = \emptyset and hence dj \leq rj\prime . Since we have Fi \succ Fi+1 according to Lemma 21,
there exists a job j\prime \prime \in Fi+1 with I(j) \cap I(j\prime \prime ) \not = \emptyset and j\prime \prime < j. According to the
induction hypothesis ji+1 \leq j\prime \prime < j, implying dji+1 \leq dj . Hence,

(7) j\mu < \cdot \cdot \cdot < ji+1 < j and dj\mu \leq \cdot \cdot \cdot \leq dji+1 \leq dj .

It is easy to see that no time t \geq dj is covered by any job in Hi+1, . . . ,H\mu . Hence, for
t \geq dj we have t \not \in Ti+1 \cup \cdot \cdot \cdot \cup T\mu . As dj \leq rj\prime , it follows that j

\prime /\in Hi by definition
of Hi, which is a contradiction. Hence, Hi consists of only a single job. Recall that,
by definition of Hi, the job ji of smallest index in Fi is contained in Hi, and thus
Hi = \{ ji\} .

Next we prove that Hk \succ Hk\prime holds for any k, k\prime with i \leq k < k\prime . As we have
shown (7) already, it remains to be shown that I(ji)\cap I(jh) \not = \emptyset for any h > i. Suppose
this is not true for some h, i.e., djh \leq rji . As jh is an hth active job at some time
t, there is also an ith active job at the same time and ai(t) \in Fi by definition of Fi.
Note that, as I(ai(t)) \cap I(jh) \not = \emptyset , we have rai(t) < djh \leq rji . Thus, ai(t) < ji holds,
contradicting the fact that ji is the job of smallest index in Fi.

We proceed to proving (ii): For all Hi, we have T \subseteq I(Hi). As (i) implies that
r1 \geq \cdot \cdot \cdot \geq r\mu and d1 \geq \cdot \cdot \cdot \geq d\mu , it suffices to show that T \subseteq I(H1) \cap I(H\mu ) =
I(j1) \cap I(j\mu ).

We first show that for all t \in T , it holds that t \in I(j1). By definition of T , the
ith budget of job ji is charged at t for some i \in \{ 1, . . . , \mu \} . If i = 1, clearly t \in I(j1).
Otherwise, there is a 1st active job j at time t, and by definition we have j \in F1. If
j = j1, again we are done. Otherwise, we have j1 < j, and thus rj1 \leq rj . Now notice
that t \in I(j)\cap I(jh), and thus rj \leq t < djh holds. As rj1 \leq rj and djh \leq dj1 (by (i)),
we have t \in I(j1).

Next, we show that for all t \in T , it holds that t \in I(j\mu ). Again by definition of
T , at time t the ith budget of ji is charged for some i \in \{ 1, . . . , \mu \} . We prove that
for t \in Ti, t \in I(j\mu ) by (downward) induction on i. The case i = \mu is obvious. For
i < \mu we argue in the following way: As ji \in Fi, it is the ith active job at some time
t\prime \in Ti+1 \cup \cdot \cdot \cdot \cup T\mu . Since its ith budget is exhausted at time t\prime , while at time t it is
still positive, we have t < t\prime . According to the induction hypothesis, t\prime \in I(j\mu ) holds,
and consequently t < t\prime \leq dj\mu . Further, it follows by (i) that rj\mu \leq rji \leq t. Thus, we
have t \in I(j\mu ).
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7. Conclusions. We presented an improved online algorithm for the preemptive
machine minimization problem. Our general \scrO (logm)-competitive algorithm yields
a competitive ratio of \scrO (1) for several special cases, such as, laminar and agreeable
instances as well as instances where the optimum value m is bounded by a constant.

Our methodology is based on a new lower bound construction which may be of
independent interest. We cannot rule out that a different construction of a failure
set in the analysis of the algorithm may give a (\mu , \beta )-critical pair with a constant \beta ,
which would prove directly a constant competitive ratio. Indeed, we show how to
achieve this for laminar and agreeable instances. The results on these special cases
verify the applicability of our general method, but we mention that algorithm and
analysis are not optimized to give the best possible constants.
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