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Abstract. We study scheduling problems on a machine of varying speed.
Assuming a known speed function (given through an oracle) we ask for a
cost-efficient scheduling solution. Our main result is a PTAS for minimiz-
ing the total weighted completion time on a machine of varying speed.
This implies also a PTAS for the closely related problem of scheduling
to minimize generalized global cost functions. The key to our results is a
re-interpretation of the problem within the well-known two-dimensional
Gantt chart: instead of the standard approach of scheduling in the time-
dimension, we construct scheduling solutions in the weight-dimension.

We also consider a dynamic problem variant in which deciding upon
the speed is part of the scheduling problem and we are interested in
the tradeoff between scheduling cost and speed-scaling cost, which is
typically the energy consumption. We obtain two insightful results: (1)
the optimal scheduling order is independent of the energy consumption
and (2) the problem can be reduced to the setting where the speed of
the machine is fixed, and thus admits a PTAS.

1 Introduction

In several computation and production environments we face scheduling prob-
lems in which the speed of resources may vary. We distinguish mainly two types
of varying speed scenarios: one, in which the speed is a given function of time,
and another dynamic setting in which deciding upon the processor speed is part
of the scheduling problem. The first setting occurs, e.g., in production environ-
ments where the speed of a resource may change due to overloading, aging, or in
an extreme case it may be completely unavailable due to maintenance or failure.
The dynamic setting finds application particularly in modern computer architec-
tures, where speed-scaling is an important tool for power-management. Here we
are interested in the tradeoff between the power consumption and the quality-
of-service. Both research directions—scheduling on a machine with given speed

� Supported by the German Science Foundation (DFG) under contract ME 3825/1,
by FONDECYT grant 3130407, and by Nucleo Milenio Información y Coordinación
en Redes ICM/FIC P10-024F.

F.V. Fomin et al. (Eds.): ICALP 2013, Part I, LNCS 7965, pp. 745–756, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



746 N. Megow and J. Verschae

fluctuation as well as scheduling including speed-scaling—have been pursued
quite extensively, but seemingly separately from each other.

The main focus of our work and the main technical contribution lie in the set-
ting with a given speed function. We present a PTAS for scheduling to minimize
the sum of weighted completion times

∑
j wjCj , which is best possible unless

P=NP. In addition, we draw an interesting connection between the given speed
and dynamic models which allows us to utilize the results for the given speed
setting also for the dynamic problem. Very useful in our arguments is the well-
known geometric view of the min-sum scheduling problem in a two-dimensional
Gantt chart, an interpretation originally introduced in [11]. Crucial to our re-
sults is the deviation from the standard view of scheduling in the time dimension
and switching to scheduling in the weight dimension. This dual view allows us
to cope with the highly sensitive speed changes in the time dimension which
prohibit standard rounding, guessing, and approximation techniques.

Previous Work

Research on scheduling on a machine of given varying speed has been mainly fo-
cused on the special case of scheduling with non-availability periods, see e.g. [18].
Despite a history of more than 30 years, only recently the first constant approx-
imation for min

∑
wjCj was derived in [12]. In fact, their (4+ ε)-approximation

computes a universal sequence which has the same guarantee for any (unknown)
speed function. For the setting with release dates, they give an approximation
algorithm with the same guarantee for any given speed function. If the speed is
only increasing, there is an efficient PTAS [20], if all release dates are equal. In
this case the complexity remains an open question, whereas for general speed
functions the problem is strongly NP-hard, even when for each job the weight
and processing time are equal [22].

The problem of scheduling on a machine of varying speed is equivalent to
scheduling on an ideal machine (of constant speed) but minimizing a more gen-
eral global cost function

∑
wjf(Cj), where f is a nondecreasing function. In

this identification, f(C) denotes the time that the varying speed machine needs
to process a work volume of C [14]. Also, the special case of only nondecreas-
ing (nonincreasing) speed functions corresponds to concave (convex) global cost
functions. Recently, in [14] tight guarantees for the Smith rule for all convex and
all concave functions f were given. They also show that the problem for increas-
ing piecewise linear cost function is strongly NP-hard even with only two slopes,
and so is our problem when the speed function takes only two distinct values.

Even more general min-sum cost functions have been studied, where each job
may have its individual nondecreasing cost function. A (2 + ε)-approximation
was recently derived in [10]. For the more complex setting with release dates
a randomized O(log log(nmaxj pj))-approximation is known [5]. Clearly, these
results translate also to the setting with varying machine speed.

Scheduling with dynamic speed-scaling was initiated in [23] and became a
very active research field in the past fifteen years. Most work focuses on schedul-
ing problems where jobs have deadlines by which they must finish. We refer
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to [2,15] for an overview. Closer to our setting is the work initiated by Pruhs et
al. [19] where they obtain a polynomial algorithm for minimizing the total flow
time given an energy budget if all jobs have the same work volume. This work
is later continued by many other; see, e. g., [3, 6, 8] and the references therein.
Most of this literature is concerned with online algorithms to minimize total
(or weighted) flow time plus energy. The minimization of the weighted sum of
completion times plus energy has been considered recently in [4,7]. These works
derive constant approximations for general non-preemptive models with unre-
lated machines and release dates [4] and additional precedence constraints [7].
For our general objective of speed-scaling with an energy budget, [4] also give a
randomized (2 + ε)-approximation for unrelated machines with release dates.

Our Results

We give several best possible algorithms for problem variants that involve
scheduling to minimize the total weighted completion time on a single machine
that may vary its speed.

Our main result is an efficient PTAS (Section 3) for scheduling to minimize∑
wjCj on a machine of varying speed (given by an oracle). This is best possible

since the problem is strongly NP-hard, even when the machine speed takes only
two distinct values [14]. We also provide an FPTAS (Section 5.3) for the case that
there is a constant number of time intervals with different uniform speeds (and
the max ratio of speeds is bounded). Our results generalize recent previous results
such as a PTAS on a machine with only increasing speeds [20] and FPTASes for
only one non-availability period [16, 17].

Our results cannot be obtained with standard scheduling techniques which
heavily rely on rounding processing requirements or completion times. Such ap-
proaches typically fail on machines that may change their speed since the slight-
est error introduced by rounding might provoke an unbounded increase in the
solution cost. Similarly, adding any amount of idle time to the machine might be
fatal. Our techniques completely avoid this difficulty by a change of paradigm.
To explain our ideas it is helpful to use a 2D-Gantt chart interpretation [11]; see
Section 2. As observed before, e.g., in [13], we obtain a dual scheduling problem
by looking at the y-axis in a 2D-Gantt chart and switching the roles of the pro-
cessing times and weights. In other words, a dual solution describes a schedule
by specifying the remaining weight of the system at the moment a job completes.
This simple idea avoids the difficulties on the time-axis and allows to combine
old with new techniques for scheduling on the weight-axis.

In case that an algorithm can set the machine at arbitrary speeds, we show in
Section 4 that the optimal scheduling sequence is independent of the available
energy. This follows by analyzing a convex program that models the optimal
energy assignment for a given job permutation. A similar observation was made
independently by Vásquez [21] in a game-theoretic setting. We show that com-
puting this universal optimal sequence corresponds to the problem of schedul-
ing with a particular concave global cost function, which can be solved with
our PTAS mentioned above, or with a PTAS for non-decreasing speed [20].
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Interestingly, this reduction relies again on a problem transformation from time-
space to weight-space in the 2D-Gantt chart. For a given scheduling sequence,
we give an explicit formula for computing the optimal energy (speed) assign-
ment. Thus, we have a PTAS for speed-scaling and scheduling for a given energy
budget. We remark that the complexity of this problem is open.

In many applications, including most modern computer architectures, ma-
chines are only capable of using a given number of discrete power (speed) states.
We also provide in Section 5 an efficient PTAS for this complex scenario. This
algorithm is again based on our techniques relying on dual schedules. Further-
more, we obtain a (1+ε)-approximation of the Pareto frontier for the energy-cost
bicriteria problem. On the other hand, we show that this problem is NP-hard
even when there are only two speed states. We complement this result by giving
an FPTAS for a constant number of available speeds.

We also notice that in the speed-scaling setting, our (F)PTAS results can
be utilized to obtain a (2 + ε)-approximation for the more general problem of
preemptively scheduling jobs with non-trivial release dates on identical parallel
machines. Here, we apply our previous results to solve a fast single machine
relaxation [9] combined with a trick to control the actual job execution times.
Then, we keep the energy assignments computed in the relaxation and apply
preemptive list scheduling on parallel machines respecting release dates.

We finally remark that all our results for the setting with given speed translate
directly to a corresponding result for the equivalent problem 1| |∑j wjf(Cj)
(with f non-decreasing).

2 Model, Definitions, and Preliminaries

Problem Definition. We consider two types of scheduling problems. In both
cases we are given a set of jobs J = {1, . . . , n} with work volume (processing time
at speed 1) vj ≥ 0 and weights wj ≥ 1. We seek a schedule on a single machine
(permutation of jobs) that minimizes the sum of weighted completion times. The
speed of the machine may vary—this is where the problems distinguish.

In the problem scheduling on a machine of given varying speed we assume that
the speed function is given indirectly by an oracle. Given a value v, the oracle
returns the first point in time when the machine can finish v units of work. Thus,
for a given order of jobs, we can compute the execution time of each job and
then the total cost of the solution (assuming that there is no idle time).

In the problem scheduling with speed-scaling an algorithm determines not only
a schedule for the jobs but will also decide at which speed s > 0 the machine
will run at any time. Running a machine at certain speed requires a certain
amount of power. Power is typically modeled as a monomial (convex) function
of speed, P (s) = sα with a small constant α > 1. Given an energy budget E,
we ask for the optimal power (and thus speed) distribution and corresponding
schedule that minimizes

∑
j wjCj . More generally, we are interested in quan-

tifying the tradeoff between the scheduling objective
∑

j∈J wjCj and the total
energy consumption, that is, we aim for computing the Pareto curve for the bi-
criteria minimization problem. We consider two variants of speed-scaling: If the
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Fig. 1. 2D-Gantt chart. The x-axis shows a schedule, while the y-axis corresponds
to W (t) =

∑
Cj>t wj plus the idle weight in the corresponding weight-schedule.

machine can run at an arbitrary power level p ∈ R+, we say that we are in the
continuous-speed setting. On the other hand, if that machine can only choose
among a finite set of speeds {s1, . . . , sκ} we are in an discrete-speed environment.

From Time-Space to Weight-Space. For a schedule S, we let Cj(S) denote
the completion time of j and we let WS(t) denote the total weight of jobs
completed (strictly) after t. Whenever S is clear from the context we omit it. It
is not hard to see that

∑

j∈J

wjCj(S) =
∫ ∞

0

WS(t)dt. (1)

Our main idea is to describe our schedule in terms of the remaining weight
function W . That is, instead of determining Cj for each job j, we will implicitly
describe the completion time of j by the value ofW at the time that j completes.
We call this value the starting weight of the job j, and denote it by Sw

j . Similarly,
we define the completion weight of j as Cw

j := Sw
j + wj . This has a natural

interpretation in the two axes of the 2D-Gantt chart (see Figure 1): A typical
schedule determines completion times for jobs in time-space (x-axis), which is
highly sensitive when the speed of the machine may vary. We call such a solution
a time-schedule. Describing a scheduling solution in terms of remaining weight
can be seen as scheduling in the weight-space (y-axis), yielding a weight-schedule.

In weight-space the weights play the role of processing times. All notions that
are usually considered in schedules apply in weight-space. For example, we say
that a weight-schedule is feasible if there are no two jobs overlapping, and that
the machine is idle at weight value w if w �∈ [Sw

j , C
w
j ] for all j. In this case we say

that w is idle weight. A weight-schedule immediately defines a non-preemptive
time-schedule by ordering the jobs by decreasing completion weights.

Consider a weight-schedule S with completion weights Cw
1 ≥ . . . ≥ Cw

n , and
corresponding completion times C1 ≤ . . . ≤ Cn. To simplify notation let C0 =
Cw

n+1 = 0. Then we define the cost of S as
∑n

j=1(C
w
j − Cw

j+1)Cj . It is easy

to check, even from the 2D-Gantt chart, that this value equals
∑n

j=1 x
S
j C

w
j ,

where xS
j is the execution time of job j (in time-space). Moreover, the last

expression is equivalent to Equation (1) if and only if the weight-schedule does
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not have any idle weight. In general, the cost of the weight-schedule can only
overestimate the cost of the corresponding schedule in time space, given by (1).

On a machine of varying speed, the weight-schedule has a number of technical
advantages. For instance, while creating idle time can increase the cost arbitrar-
ily, we can create idle weight without provoking an unbounded increase in the
cost. This gives us flexibility in weight-space and implicitly a way to delay one
or more jobs in the time-schedule without increasing the cost. More precisely,
we have the following observation that can be easily seen in the 2D-Gantt chart.

Observation 1. Consider a weight-schedule S with enough idle weight so that
decreasing the completion weight of some job j, while leaving the rest untouched,
yields a feasible weight-schedule. If the order of the jobs is changed, then the
corresponding time-schedule is also modified. However, since the order of jobs in
the time-schedule is reversed, job j gets delayed but the completion time of each
job j′ �= j is not increased. Thus, this operation does not increase the cost of S.

3 A PTAS for Scheduling on a Machine with Given
Speeds

In what follows we give a PTAS for minimizing
∑

j wjCj on a machine with a
given speed function. In order to gain structure, we start by applying several
modifications to the instance and optimal solution. First we round the weights
of the jobs to the next integer power of 1 + ε, which can only increase the
objective function by a factor 1+ ε. Additionally, we discretize the weight-space
in intervals that increase exponentially. That is, we consider intervals Iu = [(1+

ε)u−1, (1 + ε)u) for u ∈ {1, . . . , ν} where ν :=
⌈
log1+ε

∑
j∈J wj

⌉
. We denote the

length of each interval Iu as |Iu| := ε(1 + ε)u−1. We will apply two important
procedures to modify weight-schedules. They are used to create idle weight so to
apply Observation 1, and they only increase the total cost by a factor 1 +O(ε).
Similar techniques, applied in time-space, were used by Afrati et al. [1].
Weight Stretch: We multiply by 1 + ε the completion weight of each job. This
creates an idle weight interval of length εwj before the starting weight of job j.
Stretch Intervals: We delay the completion weight of each job j with Cw

j ∈ Iu by

|Iu|, so that Cw
j belongs to Iu+1. Then |Iu+1|−|Iu| = ε2(1+ε)u−1 = ε|Iu+1|/(1+

ε) units of weight are left idle in Iu+1 after the transformation, unless there was
only one job completely covering Iu+1. By moving jobs within Iu, we can assume
that this idle weight is consecutive.

3.1 Dynamic Program

We now show our dynamic programming (DP) approach to obtain a PTAS. We
first describe a DP table with exponentially many entries and then discuss how
to reduce its size. Consider a subset of jobs S ⊆ J and a partial schedule of
S in the weight-space. In our dynamic program, S will correspond to the set
of jobs at the beginning of the weight-schedule, i. e., if j ∈ S and k ∈ J \ S
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then Cw
j < Cw

k . A partial weight-schedule S of jobs in S implies a schedule
in time-space with the following interpretation. Note that the makespan of the
time-schedule is completely defined by the total work volume

∑
j vj . We impose

that the last job of the schedule, which corresponds to the first job in S, finishes
at the makespan. This uniquely determines a value of Cj for each j ∈ S, and thus
also its execution time xS

j . The total cost of this partial schedule is
∑

j∈S xS
j C

w
j

(which has a simple interpretation in the 2D-Gantt chart).
Consider Fu := {S ⊆ J : w(S) ≤ (1+ε)u}. That is, a set S ∈ Fu is a potential

set to be scheduled in Iu or before. For a given interval Iu and set S ∈ Fu, we
construct a table entry T (u, S) with a (1 +O(ε))-approximation to the optimal
cost of a weight-schedule of S subject to Cw

j ≤ (1 + ε)u for all j ∈ S.
Consider now S ∈ Fu and S′ ∈ Fu−1 with S′ ⊆ S. Let S be a partial schedule

of S where the set of jobs with completion weight in Iu is exactly S \ S′. We
define APXu(S

′, S) = (1 + ε)u
∑

j∈S\S′ xS
j , which is a (1 + ε)-approximation to

∑
j∈S\S′ xS

j C
w
j , the partial cost associated to S \ S′. We remark that the values

∑
j∈S\S′ xS

j and APXu(S
′, S) do not depend on the whole schedule S, but only

on the total work volume of jobs in S′. We can compute T (u, S) with the following
formula, T (u, S) = min{T (u− 1, S′) + APXu(S

′, S) : S′ ∈ Fu−1, S
′ ⊆ S}.

The set Fu can be of exponential, and thus also this DP table. In the following
we show that there is a polynomial size set F̃u that yields (1 + ε)-approximate
solutions. We remark that the set F̃u will not depend on the speed of the machine.
Thus, the same set can be used in the speed-scaling scenario.

3.2 Light Jobs

We structure an instance by classifying jobs by their size in weight-space.

Definition 1. In a given schedule, a job j is said to be light if wj ≤ ε|Iu|, where
u is such that Sw

j ∈ Iu. A job that is not light is heavy.

Given a weight-schedule for heavy jobs, we can greedily find a (1 + O(ε))-
approximate solution for the complete instance. To show this, consider any
weight-schedule S. First, remove all light jobs. Then we move jobs within each
interval Iu, such that the idle weight inside each interval is consecutive. Clearly,
this can only increase the cost of the solution by a 1 + ε factor. After, we apply
the following preemptive greedy algorithm to assign light jobs, which we call
Algorithm Smith in Weight-Space: For u = 1, . . . , ν and each idle weight w ∈ Iu,
process a job j maximizing vj/wj among all available jobs with wj ≤ ε|Iu|.

To remove preemptions, we apply the Stretch Interval subroutine1 twice, cre-
ating an idle weight interval in Iu of length at least 2ε|Iu|/(1 + ε) ≥ ε|Iu| (for
ε ≤ 1). This gives enough space in each interval Iu to completely process the
(unique) preempted light job with starting weight in Iu. Then, Observation 1
implies that we can remove preemptions, obtaining a new schedule S ′. We now
show that the cost of S ′ is at most a factor of 1+O(ε) larger than the cost of S.
1 The Stretch Interval procedure also applies to preemptive settings by interpreting
each piece of a job as an independent job.
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To do so we need a few definitions. For any weight-schedule S, let us define the
remaining volume function as V S(w) :=

∑
j:Cw

j ≥w vj . For a given w, let Ij(w)

be equal 1 if the weight-schedule processes j at weight w, and 0 otherwise. Then,
fj(w) := (1/wj)

∫∞
w Ij(w

′)dw′ corresponds to the fraction of job j processed af-
ter w. With this we define the fractional remaining volume function, which is
similar to the remaining volume function but treats light jobs as “liquid”:

V S
f (w) :=

∑

j:j is light

fj(w) · vj +
∑

j:j is heavy,Cw
j ≥w

vj for all w ≥ 0.

We notice that V S
f (w) ≤ V S(w) for all w ≥ 0.

Consider now the function f(v) corresponding to the earliest point in time in
which the machine can process a work volume of v. Notice that this is the same
function used when transforming our problem to 1| |∑j wjf(Cj). It is easy to

see—even from the 2D-Gantt chart—that
∫∞
0 f(V S(w))dw corresponds to the

cost of the weight-schedule S. Also, notice that f(v) is non-decreasing, so that
V S(w) ≤ V S′

(w) for all w implies that the cost of S is at most the cost of S ′.

Lemma 1. The cost of S ′ is at most 1 +O(ε) times larger than the cost of S.
Proof (Idea). If we assume the position of heavy jobs as given, the schedule Sf

returned by Algorithm Smith in Weight Space minimizes V
Sf

f (w) for any given
w ≥ 0. The result follows by combining this insight plus the ideas above.

Corollary 1. At a loss of a 1 + O(ε) factor in the objective function, we can
assume the following. For a given interval Iu, consider any pair of jobs j, k
whose weights are at most ε|Iu|. If both jobs are processed in Iu or later and
vk/wk ≤ vj/wj, then Cw

j ≤ Cw
k .

3.3 Localization and Compact Search Space

The objective of this section is to compute, for each job j ∈ J , two values rwj
and dwj so that job j is scheduled completely within [rwj , d

w
j ) in some (1+O(ε))-

approximate weight-schedule. We call rwj and dwj the release-weight and deadline-
weight of job j, respectively. Crucially, we need that the length of the interval
[rwj , d

w
j ) is not too large, namely that dj ∈ O(poly(1/ε)rj). Such values can be

obtained by using Corollary 1 and techniques from [1]; we skip the details.

Lemma 2. We can compute in poly-time values rwj and dwj for each j ∈ J such
that: (i) there exists a (1 + O(ε))-approximate weight-schedule that processes
each job j within [rwj , d

w
j ), (ii) there exists a constant s ∈ O(log(1/ε)/ε) such

that dwj ≤ rwj · (1 + ε)s, (iii) rwj and dwj are integer powers of (1 + ε), and (iv)
the values rwj an dwj are independent of the speed of the machine.

Now we are ready to express set F̃u. Instead of describing a set S ∈ F̃u, we
describe V = J \ S, that is, the jobs with completion weights in Iu+1 or later.
Clearly, Lemma 2 implies that we just need to decide about jobs with release
weights rwj = (1+ε)v with v ∈ {u+1−s, . . . , u−1}. Enumerating over (basically)
all possibilities for each v ∈ {u+ 1− s, . . . , u− 1}, we obtain the following.
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Lemma 3. For each interval Iu, we can construct in poly-time a set F̃u that
satisfies the following: (i) there exists a (1 +O(ε))-approximate weight-schedule
in which the set of jobs with completion weight at most (1 + ε)u belongs to F̃u

for each interval Iu, (ii) the set F̃u has cardinality at most 2O(log2(1/ε)/ε3), and
(iii) the set F̃u is completely independent of the speed of the machine.

With the discussion at the beginning of this section we obtain a PTAS, which is
a best possible approximation since the problem is strongly NP-hard [14].

Theorem 1. There exists an efficient PTAS for minimizing the weighted sum
of completion times on a machine with given varying speed.

4 Speed-Scaling for Continuous Speeds

When assuming a continuous spectrum of speeds, each job will be executed at
a uniform speed because of the convexity of the power function [23]. Let sj be
the speed at which job j is running. Then j’s power consumption is pj = sαj ,

and its execution time is xj = vj/sj = vj/p
1/α
j . The energy that is required for

processing j is Ej = pj · xj = pj · vj
sj

= sα−1
j · vj = vαj /x

α−1
j .

Let π be a sequence of jobs in a schedule, where π(j) is the index of the
j-th job in the sequence for each i ∈ {1, . . . , n}. Computing the optimal energy
assignment for all jobs, given a fixed sequence π and using a total amount of
energy E, can be done with a convex program. We rewrite the objective function
as

∑n
j=1 wjCj =

∑n
j=1 wπ(j)

∑j
k=1 xπ(k) =

∑n
j=1 xπ(j)

∑n
k=j wπ(k) and define

Wπ
π(j) =

∑n
k=j wπ(k). Note that xj =

(
vαj /Ej

)1/(α−1)
, and that Wπ

j is the total
remaining weight just before j is completed in any schedule concordant with π.

min

⎧
⎨

⎩

n∑

j=1

Wπ
j ·

(
vαj
Ej

)1/(α−1)

:

n∑

j=1

Ej ≤ E, and Ej ≥ 0 ∀j ∈ {1, . . . , n}
⎫
⎬

⎭
.

This program has linear constraints and a convex objective function. The next
theorem easily follows by the well-known KKT conditions.

Theorem 2. For a given job sequence π, a power function P (s) = sα and an
energy budget E, the optimal energy assignment in an optimal schedule for min-
imizing

∑
j wjCj subject to Cπ(1) < . . . < Cπ(n) is determined by

Ej = vj ·
(
Wπ

j

)(α−1)/α · E

γπ
, where γπ =

n∑

j=1

vj ·
(
Wπ

j

)(α−1)/α
.

Interestingly, the optimal job sequence is independent of the energy distribu-
tion, and even stronger, it is independent of the overall energy budget. In other
words, one scheduling sequence is universally optimal for all energy budgets.
Furthermore, this sequence is obtained by solving in weight-space a (standard)
scheduling problem with a cost function that depends on the power function.
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Theorem 3. Given a power function P (s) = sα, there is a universal sequence
that minimizes

∑
j wjCj for any energy budget. The sequence is given by revers-

ing an optimal solution of the scheduling problem 1| |∑wjC
(α−1)/α
j on a single

machine of unit speed.

Thus, the scheduling part of the speed-scaling scheduling problem reduces to a
problem which can be solved by our PTAS from Sect. 3. Since the cost func-
tion f(x) = x(α−1)/α is concave for α > 1, the specialized PTAS in [20] also
solves it. Combining Theorems 2 and 3 gives the main result.

Theorem 4. There is a PTAS for the continuous speed-scaling and scheduling
problem with a given energy budget E.

5 Speed-Scaling for Discrete Speeds

In this section we consider a more realistic setting, where the machine can choose
from a set of κ different speeds available s1 > . . . > sκ ≥ 1.

5.1 A PTAS for Discrete Speeds

Let the power function P (s) be an arbitrary computable function. To derive our
algorithm, we adopt the PTAS for scheduling on a machine with given varying
speed (Sect. 3) and incorporate the allocation of energy.

We adopt the same definitions of weight intervals Iu and sets Fu as in Sect. 3.
For a subset of jobs S ∈ Fu and a value z ≥ 0, let E[u, S, z] be the minimum total
energy necessary for scheduling S such that Cw

j ≤ (1 + ε)u for each j ∈ S, and
the scheduling cost is at most z, i.e.,

∑
j∈S xj ·Cw

j ≤ z where xj is the execution
time under some feasible speed assignment. Recall that the speed assignment
determines the energy. The recursive definition of a state is as follows:

E(u, S, z) = min{E(u− 1, S′, z′) + APXu(S \ S′, z − z′) : S′ ∈ Fu−1, S
′ ⊆ S}.

Here APXu(S\S′, z−z′) is the minimum energy necessary for scheduling all jobs
j ∈ S\S′ with Cw

j ∈ Iu, such that their partial (rounded) cost
∑

j∈S\S′ xj(1+ε)u

is at most z − z′.

Lemma 4. The value APXu(S \ S′, z − z′) can be computed with an LP.

We let the DP fill the table for u ∈ {0, . . . , ν} with ν = �log∑j∈J wj	 and z ∈
[1, zUB] for some upper bound such as zUB =

∑
j∈J wj

∑j
k=1 vj/sκ. Then among

all end states [ν, J, · ] with value at most the energy budget E we choose the one
with minimum cost z. Then we obtain the corresponding (1 + ε)-approximate
solution for energy E by backtracking.

This DP has an exponential number of entries. However, we can apply results
from Section 3 and standard rounding techniques to reduce the running time.

Theorem 5. There is an efficient PTAS for minimizing the total scheduling
cost for speed-scaling with a given energy budget.
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5.2 Speed-Scaling for Discrete Speeds Is NP-Hard

We complement Theorem 5 by showing that our problem is NP-hard. Our re-
duction is based on the NP-hard problem 1|dj = d|∑wjTj [24].

Theorem 6. The problem of minimizing
∑

j wjCj on a single machine for dis-
crete speeds is NP-hard, even if the number of available power levels is 2.

5.3 An FPTAS for a Constant Number of Speed States

Let s1 > . . . > sκ ≥ 1. A simple interchange argument shows that an optimal
solution chooses the speed non-increasing over time. We construct a schedule in
weight-space. There are at most κ jobs that run at more than one speed; call
them split jobs. We guess the split jobs together with their completion weight up
to a factor 1 + ε. This partitions the weight space into κ subintervals Ii, which
we have to fill with the remaining jobs non-preemptively. By construction all
jobs in one subinterval run at the same uniform speed. The high-level idea now
is to use a DP for partitioning the remaining jobs and keeping control on the
power consumption and the total cost. One critical point is that we do not know
the execution time xj for split jobs and we cannot guess them: this would cause
a running time dependency on the max-speed ratio. However, for each possible
objective value for the split jobs, we can compute the minimum energy with an
LP similar to the one in the PTAS in Section 5.1.

The main challenge is to reduce the exponential number DP states to a poly-
nomial size. The intuition behind our algorithm is to remove the states with
the same (rounded) objective value and nearly the same total work (differing
by at most ε|Ii|/n) assigned to an interval Ii. Among them, we want to store
those with smallest amount of work in an interval Ii, in order to make sure that
enough space remains for further jobs. To show that this approach is feasible we
show bounds on the change in the total cost. This yields the next theorem. The
theorem after follows by applying these techniques in time-space.

Theorem 7. There is an FPTAS for speed-scaling with a given energy budget
for min

∑
wjCj on a single machine with constantly many discrete speeds.

Theorem 8. There exists an FPTAS for non-preemptive2 scheduling to mini-
mize

∑
wjCj on a single machine with a constant number of intervals of dif-

ferent, but uniform speed. For the resumable1 setting, there is an FPTAS in the
same setting when the maximum ratio of speeds is bounded.
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