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We consider dynamic stochastic scheduling of preemptive jobs with processing times that follow independent discrete probability
distributions. We derive a policy with a guaranteed performance ratio of 2 for the problem of minimizing the sum of weighted
completion times on identical parallel machines subject to release dates. The analysis is tight. Our policy as well as their
analysis applies also to the more general model of stochastic online scheduling.

In contrast to previous results for nonpreemptive stochastic scheduling, our preemptive policy yields an approximation
guarantee that is independent of the processing time distributions. However, our policy extensively utilizes information on the
distributions other than the first (and second) moments. We also introduce a new nontrivial lower bound on the expected value of
an unknown optimal policy. It relies on a relaxation to the basic problem on a single machine without release dates, which is
known to be solved optimally by the Gittins index priority rule. This dynamic priority index is crucial to the analysis and also
inspires the design of our policy.
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1. Introduction. Stochastic scheduling problems have attracted researchers for about four decades. A full
range of articles is concerned with criteria that guarantee the optimality of simple policies for special scheduling
problems; see, e.g., Pinedo [26]. It is only recently that research also focuses on approximations for less restrictive
problem settings (Möhring et al. [24], Skutella and Uetz [37], Megow et al. [19], Schulz [30], Dean et al. [8]).
All these results apply to nonpreemptive scheduling, and we are not aware of any approximation results when job
preemption is allowed and processing times are stochastic.

In this paper, we give the first constant factor approximation for the stochastic version of the classical problem
of scheduling jobs preemptively, with or without release dates, on identical parallel machines. The objective is to
minimize the expected sum of weighted completion times.

We provide a very natural scheduling policy and show that it has an expected objective value of at most twice
the expected optimal value. The analysis of our policy is tight. Both, the policy and its analysis are also valid in
the model of stochastic online scheduling (Megow et al. [19], Chou et al. [5], Vredeveld [39]). They rely on the
celebrated Gittins index priority rule (Gittins [9, 10]), which is an optimal policy for the setting when there is only
one machine and there are no nontrivial release dates (Sevcik [33], Weiss [41]). Under deterministic input, our
policy corresponds to the preemptive weighted shortest processing time (WSPT) rule, which is known to have a
tight performance guarantee of 2 on identical parallel machines (Megow and Schulz [18]). We may interpret our
stochastic policy as a generalization of the deterministic preemptive WSPT algorithm to stochastic input by
incorporating the dynamic job prioritization according to the Gittins index.

Whereas previous approximation results for nonpreemptive scheduling have performance guarantees dependent
on the coefficients of variation of the underlying probability distributions, our performance guarantee is independent
of parameters of the processing time distributions. Moreover, it matches the guarantee of its deterministic
counterpart. On the other hand, our policy requires the complete information about the probability distribution,
whereas the policies for nonpreemptive stochastic scheduling only utilize information about the first and second
moments.

1.1. Model and problem definition. Let J = 81121 : : : 1 n9 be a set of jobs that must be scheduled on m
identical parallel machines. Each of the machines can process at most one job at a time, and any job can be
processed by no more than one machine at a time. Each job j has an associated positive weight wj and an
individual release date rj ≥ 0, before which it is not available for processing. We allow preemption, which means
that the processing of a job may be interrupted and resumed later, on the same or a different machine.

The stochastic component in the model we consider is the uncertainty about processing times. Any job j must
be processed for P j units of time, where P j is a random variable. By Ɛ6P j7 we denote the expected value of
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the processing time of job j , and by pj a particular realization of P j . We assume that all random variables of
processing times are stochastically independent and follow finite, discrete probability distributions. With the
latter restriction and a standard scaling argument, we may assume w.l.o.g. that P j attains integral values in the
set ìj = 81121 : : : 1Mj9, and that all release dates are integral. The sample space of all processing times is denoted
by ì =ì1 × · · · ×ìn.

The objective is to schedule the processing of all jobs so as to minimize the total weighted completion time of
the jobs,

∑

j∈J wjCj , in expectation, where Cj denotes the completion time of job j . Adopting the well-known
three-field classification scheme by Graham et al. [12], we denote the problem by P � rj1 pmtn � Ɛ6

∑

wjCj 7.
The solution of a stochastic scheduling problem is not a simple schedule, but a so-called scheduling policy. We

follow the notion of scheduling policies as proposed by Möhring et al. [22, 23]. A scheduling policy makes
scheduling decisions at certain decision time points t. Such a decision consists of the set of jobs to be scheduled at
decision time t and a tentative decision time point t′. The next decision time will be the tentative decision time t′ or
the first job completion after the current decision time point t, whichever comes first. These decisions are based on
information on the observed past up to time t, as well as a priori knowledge of the input data. The policy, however,
must not anticipate information about the future, i.e., it must not use the actual realizations pj of processing times
of jobs that have not yet been completed by time t. Such a policy is called nonanticipatory. An optimal stochastic
scheduling policy is a nonanticipatory policy that minimizes the total weighted completion time in expectation.

In this paper, we concentrate on approximation policies as defined by Möhring et al. [24].

Definition 1.1. A stochastic policy ç is a �-approximation, for some �≥ 1, if for all problem instances I ,

Ɛ6ç4I57 ≤ �Ɛ6Opt4I571

where Ɛ6ç4I57 and Ɛ6Opt4I57 denote the expected values that the policy ç and an optimal nonanticipatory policy,
respectively, achieve on a given instance I . The value � is called the performance guarantee of policy ç.

The policies we consider belong to the more general class of policies for the stochastic online scheduling model.
Here, a policy learns about the existence and the characteristics of a job j only at its individual release date rj .
This means that an online policy must not anticipate the arrival of a job at any time earlier than its release date.
At this point in time, the job with the probability distribution of its processing time and its deterministic weight are
revealed. Thus, stochastic online policies are required to be online and nonanticipatory. We refer to Megow
et al. [19] for a more detailed discussion on stochastic online policies. As suggested in that paper, we use in this
model a generalized definition of approximation guarantees from the stochastic scheduling setting by comparing
the expected outcome of a nonanticipatory online policy with the expected outcome of an optimal nonanticipatory
offline policy.

1.2. Previous work. The classical deterministic variant of our scheduling problem that seeks to minimize the
weighted sum of completion times is well known to be NP-hard (Labetoulle et al. [15], Lenstra et al. [16]). This is
true even on a single processor or if all release dates are equal. Polynomial time approximation schemes have been
presented by Afrati et al. [1].

Stochastic scheduling has been under consideration for more than 40 years. We refer the reader to Pinedo’s book
(Pinedo [26]) for an overview. Some of the first results on preemptive stochastic scheduling that can be found in
the literature are by Chazan et al. [3] and Konheim [14]. They formulated sufficient and necessary conditions for a
policy to optimally solve the single-machine problem where all jobs become available at the same time. Later
Sevcik [33] developed an intuitive method for creating optimal schedules (in expectation). He introduces a priority
policy that relies on a dynamic index that can be computed for each job based on the properties of the job, but
independently of other jobs.

Gittins [9] showed that this priority index is a special case of his Gittins index (Gittins [9, 10]). Later in 1995,
Weiss [41] formulated Sevcik’s priority index again in terms of the Gittins index, and named it a Gittins index
priority policy (Gipp). He also provided a different proof of the optimality of this priority policy, based on the
work conservation invariance principle. Weiss covers a more general problem than the one considered here and in
Chazan et al. [3], Konheim [14], and Sevcik [33]: The holding costs (weights) of a job are not deterministic
constants, but may vary during the processing of a job. At each state, these holding costs are random variables.

For more general scheduling problems with release dates and/or multiple machines, no optimal policies are
known. Instead, the literature reflects a variety of research on restricted problems such as those with special
probability distributions for processing times or special job weights. Pinedo [25] considered the single-machine
problem in the presence of release dates, but restricted the processing times to be drawn from exponential
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distributions. He showed the optimality of the preemptive variant of the weighted shortest expected processing time
(Wsept) policy, which is a policy that processes at any time the job with the highest ratio wj/Ɛ6Pj 7 among all jobs
that have been released and not yet completed. If all jobs become available at the same time, then preemption is
not even necessary. This is also true for more general processing time distributions: Rothkopf [28] showed
that for increasing hazard rate (failure rate) distributions, no finite number of preemptions can outperform a
nonpreemptive policy.

For scheduling jobs with equal weights and equal release dates, an optimal policy is known for quite a large
class of processing time distributions. Weber [40] showed that for processing times with monotone hazard rates,
the dynamic shortest expected remaining processing time (Serpt) policy is optimal; this policy always gives
highest priority to jobs with minimum expected remaining processing times. This policy heavily utilizes the option
of preempting jobs when the hazard rate is decreasing. On the other hand, it reduces to the nonpreemptive shortest
expected processing time (Sept) policy when the hazard rate is increasing. The optimality of this static policy,
Sept, has been shown earlier for exponentially distributed processing times by Glazebrook [11], Weiss and
Pinedo [42], and Bruno et al. [2]. In the case when processing times are not drawn from a distribution with
monotone hazard rates, Coffman et al. [6] have shown that this policy is not optimal, even if all processing times
follow the same two-point distribution and even if we deal with only two processors. On the other hand, for such a
special distribution, they showed that the Sept policy is asymptotically optimal and has a turnpike property:
Asymptotically, for large n, most of the optimal decisions will be made according to this policy. In case of general
probability distributions and an arbitrary number of machines, Weiss [41] showed that the Gittins index priority
policy is asymptotically turnpike optimal and has an expected value that is only an additive constant away from the
optimal value.

None of the results on multiple machines consider individual job weights. Under strong restrictions on weights
and exponential processing times, Kämpke [13] proves the optimality of the Wsept policy; in this setting, weights
need to be agreeable, which means that for any two jobs, i and j , wi/Ɛ6P i7 < wj/Ɛ6P j 7 implies wi ≤wj .

Although optimal policies have been found only for very special problem settings, research has focused lately on
obtaining approximation algorithms. Such investigations have been successful in the nonpreemptive setting.
Möhring et al. [24] derived the first constant-factor approximations for the nonpreemptive problem with and
without release dates. Their results are based on a lower bound on the expected optimum value that is derived from
a linear programming (LP) relaxation. The performance guarantees they prove are functions of a parameter that
bounds the squared coefficient of variation of processing times. For specific types of probability distributions of the
processing times, stochastic policies with improved performance ratios were given in Megow et al. [19] and
Schulz [30]. In fact, these subsequent results also apply to the more general stochastic scheduling model with
online job arrivals. Skutella and Uetz [37] complemented the first approximation results by policies for scheduling
with precedence constraints. In general, all known performance guarantees for nonpreemptive policies depend on
the distribution of processing times. This is also true for recent results for the online version of the stochastic
scheduling model obtained by Megow et al. [19], Chou et al. [5], and Schulz [30]. All obtained results that include
asymptotic optimality (Chou et al. [5]) and approximation guarantees for deterministic as well as randomized
policies (Megow et al. [19], Schulz [30]) address nonpreemptive scheduling.

Several scheduling algorithms were designed and analyzed for deterministic online scheduling problems. For a
general survey of online scheduling models and results, we refer the reader to Sgall [34] and Pruhs et al. [27].
We consider online scheduling when jobs become known at their release date. In the context of preemptive
scheduling, Sitters [35] gave a 1056-competitive algorithm for the single-machine problem in this model. This is
the best result currently known. It improved upon an earlier result by Schulz and Skutella [31], who generalized
the classical Smith rule (Smith [38]) to the problem of scheduling jobs with individual release dates, achieving a
competitive ratio of 2. This algorithm has been generalized further to the multiple-machine problem without
loss of performance in Megow and Schulz [18]. Sitters [36] presented a deterministic online algorithm with a
performance guarantee of 1079141 + 1/

√
m52, which is less than 2 for m≥ 311 and drops to 10791 if m tends to

infinity. Combining it with the randomized 42 − 1/m5-competitive algorithm by Correa and Wagner [7], Sitters
obtains an improved randomized online algorithm for parallel machines. However, for the single-machine problem,
Schulz and Skutella [32] provided a randomized 4/3-competitive algorithm.

1.3. Our contribution. We present a constant factor approximation for preemptive stochastic scheduling.
For jobs with arbitrary finite discrete processing time distributions and individual release dates, we give
a 2-approximation for multiple machines. This performance guarantee distinguishes from previously known results
for nonpreemptive variants of this problem as it is constant and independent of the probability distribution of
processing times. Our policy, as well as its analysis, applies also to the more general model of stochastic online
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scheduling. It can be seen as a stochastic generalization of a deterministic online algorithm analyzed in Megow
and Schulz [18]. While all previous generalizations of deterministic algorithms for the nonpreemptive setting
resulted in a loss in performance depending on the parameters of the probability distributions (Möhring et al. [24],
Schulz [30], Skutella and Uetz [37], Megow et al. [19]), our policy has the same performance guarantee as the
deterministic algorithm from Megow and Schulz [18].

The policy we study, is motivated by Gipp, an optimal policy for the single-machine problem without release
dates (Konheim [14], Sevcik [33], Weiss [41]). Our policy, named Follow-Gipp (F-Gipp), is a parallel-machine
policy that follows Gipp in a somewhat lazy way. As we explain later in more detail, F-Gipp updates the dynamic
Gipp-index only at certain time points. This allows us to give a tight analysis that yields the performance
guarantee 2.

The Gittins index not only inspires the design of our scheduling policy, but it is also crucial for bounding the
optimal value. We derive a closed-form lower bound on the expected objective value of an unknown optimal policy
for the preemptive stochastic scheduling problem. First, we give a closed-form expression of the expected value
that Gipp achieves on a single machine without release dates. Then, we employ a stochastic variant of a fast
single-machine relaxation, which was originally introduced for deterministic scheduling by Chekuri et al. [4]. Since
Gipp is an optimal policy for a relaxed version of our fast single-machine relaxation, we can give a closed-form
expression for a lower bound on the expected value of an optimal policy for the original parallel-machine problem.
The closed-form expression of our lower bound is not imperative for the analysis of our algorithms, but we believe
that it is of independent interest and might be useful in other applications.

In general, our policy is not optimal. However, under restricted problem settings, it coincides with policies
whose optimality is known. If processing times are exponentially distributed and release dates are absent, F-Gipp
coincides with the preemptive Wsept rule. As mentioned above, this classical policy is optimal if all weights
are equal (Glazebrook [11], Weiss and Pinedo [42], Bruno et al. [2]) or, more generally, if they are agreeable
(Kämpke [13]). If there is only a single machine available and jobs have arbitrary release dates, then F-Gipp
coincides with preemptive Wsept and is optimal (Pinedo [25]). If there are no release dates, then F-Gipp solves
the weighted single-machine problem optimally for arbitrary processing time distributions because, in that case, it
coincides with the optimal policy Gipp (Konheim [14], Sevcik [33], Weiss [41]). Finally, we discuss the behavior
of F-Gipp under deterministic input on a single machine. In the case of arbitrary job weights without release dates,
F-Gipp coincides with the optimal weighted shortest processing time rule, also known as Smith’s rule (Smith [38]).
This folkloric algorithm processes at any time the unfinished job with the highest ratio wj/pj . For arbitrary release
dates, its preemptive variant has an approximation guarantee of 2, which is tight (Schulz and Skutella [31]). In a
way, F-Gipp can be seen as a generalization of the deterministic algorithms Wspt.

1.4. Organization of the paper. In §2, we define the Gittins index priority policy (Gipp) and discuss useful
properties of the index function. This allows us to reinterpret Gipp and to derive a closed-form expression for the
expected objective value it obtains. For scheduling problems with nontrivial release dates and/or multiple machines,
optimal policies and the corresponding expected objective values are unknown. Therefore, we use lower bounds
on the optimal value to compare the expected outcome of a policy with the expected outcome Ɛ6Opt7 of an
unknown optimal policy Opt. The trivial bound Ɛ6Opt7≥

∑

j∈J wj4rj + Ɛ6P j 75 does not suffice proving constant
approximation guarantees as it may diverge from an optimal solution by a factor ì4n5. (Consider, e.g., instances in
which all jobs are released at the same time.)

In §3, we use the concept of a fast single machine to obtain such a lower bound on the optimal solution value
for the parallel-machine problem based on the optimal single-machine policy Gipp. In §4, we introduce a simple
parallel-machine policy, F-Gipp, with an approximation factor of exactly 2 for arbitrary discrete processing time
distributions.

Finally, we discuss in §5 a very similar alternative scheduling policy, the feasibility of our techniques for
continuous processing time distributions, and a more general stochastic online scheduling model.

2. The Gittins index priority policy. In this section, we describe the Gittins index priority policy (Gipp) and
derive a closed-form expression for the expected total weighted completion time of this optimal single-machine
policy when there are no nontrivial release dates.

Given that a job j has been processed for y time units and it has not yet been completed, we define the expected
investment of processing this job for q time units or up to completion, whichever comes first, as

Ij4q1 y5= Ɛ6min8P j − y1 q9 � P j > y70
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The ratio of the weighted probability that this job is completed within the next q time units over the expected
investment, is the basis of the Gittins index priority rule. We define it as the rank of a part of a job, called sub-job,
of length q of job j , after it has completed y units of processing:

Rj4q1 y5=
wj Pr6P j − y ≤ q � P j > y7

Ij4q1 y5
0

This ratio is well defined if we assume that we compute the rank only for q > 0 and P j > y, in which case the
investment Ij4q1 y5 has a value greater than zero.

For a given (unfinished) job j and attained processing time y, we are interested in the maximal rank it can
achieve. We call this the Gittins index, or rank, of job j , after it has been processed for y time units:

Rj4y5= max
q∈�+

Rj4q1 y50

The length of the sub-job achieving the maximal rank is denoted as

qj4y5= max
{

q ∈�+2 Rj4q1 y5=Rj4y5
}

0

With the definitions above, we define the Gittins index priority policy for minimizing the expected total weighted
completion time on a single machine.

Algorithm 1 (Gittins index priority policy (Gipp))
At any time t, process an unfinished job j with the currently highest rank Rj4yj4t55, where yj4t5 denotes the amount
of processing that has been done on job j by time t. Break ties by choosing the job with the smallest job index.

Theorem 2.1 (Konheim [14], Sevcik [33], Weiss [41]). The Gittins index priority policy (Gipp) optimally
solves the stochastic scheduling problem 1 � pmtn � Ɛ6

∑

wjCj 7 on a single machine without job release dates.

The following properties of the Gittins indices and the lengths of sub-jobs achieving the Gittins index are well
known; see Gittins [10] and Weiss [41]. In parts, they have been derived earlier in the scheduling context by
Konheim [14] and Sevcik [33]. They prove useful to analyze Gipp as well as the more general policy that we
present in this paper.

Proposition 2.1 (Gittins [10], Weiss [41]). Consider a job j that has been processed for y time units. Then,
for any 0 < � < qj4y5 it holds that

Rj4y5 ≤ Rj4y+ �51 (a)

qj4y+ �5 ≤ qj4y5− �1 (b)

Rj4y5+ qj4y55 ≤ Rj4y50 (c)

A quantum of job j is defined as the sub-job of length qj4y5 that causes the maximal rank Rj4y5. We now split
a job j into a set of nj quanta, denoted by tuples 4j1 i5, for i = 11 : : : 1 nj . The processing time yji that a job j has
attained up to a quantum 4j1 i5, and the length of each quantum, qji, are recursively defined as yj1 = 0, qji = qj4yji5,
and yj1 i+1 = yj1 i + qji. By Proposition 2.1(a), we know that, while processing a quantum, the rank of the job does
not decrease, whereas Proposition 2.1(c) and the definition of qj4y5 tell us that the rank is strictly lower at the
beginning of the next quantum. Hence, once a quantum has been started, Gipp will process it for its complete
length or up to the completion of the job, whichever comes first; that means, Gipp preempts a job only at the end
of a quantum. Obviously, the Gipp policy processes job quanta nonpreemptively in nonincreasing order of their
ranks. In particular, Gipp does not need to recompute the maximum rank of a running job until the completion of
the current quantum. Thus, we may rephrase Gipp in the following way.

Algorithm 2 ((Reformulated) Gittins index priority policy (Gipp))
For each job, recursively compute the partition into quanta of maximal rank. Schedule job quanta of unfinished
jobs in nonincreasing order of their rank.

Before proceeding with the structural analysis of Gipp, we briefly discuss the behavior of the rank function of a
(sub-)job and more implications of the properties above. Figure 1 illustrates the maximum rank of two jobs with
particular processing time distributions (three-point and exponential distribution) as a function of the amount of
time that the job has been processing.
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(a) The maximum rank of a job with processing time
that follows a three-point distribution. The breakpoints
occur after each quantum in the recursive partition

y

Rj(y)

y

Rj(y)

(b) The maximum rank of a job with
exponential processing time

Figure 1. The maximum rank of jobs with certain processing time distributions depending on the amount of time, y, that the job has been
processed.

The general assumption of stochastic job processing times subsumes deterministic processing times as a special
case. Consider an incomplete job j with deterministic processing time pj , of which y units already elapsed.
The rank and the quantum lengths are deterministically predetermined by their definition:

Rj4q1 y5=
wj Pr6P j − y ≤ q � P j > y7

Ij4q1 y5
=

{

01 iff q < pj − y3
wj/4pj − y51 otherwise.

The behavior of the rank function for deterministic job processing times is illustrated in Figure 2. The quantum
length is infinite, which does not harm the policy since it processes only unfinished jobs. Note that for deterministic
processing times, Gipp coincides with the Wspt rule, which is known to be optimal in the deterministic
single-machine setting (Smith [38]).

For the analysis of our policy in §4, Proposition 2.1(b) is of particular importance. It bounds the length of a new
quantum that causes maximum rank if a previous quantum got preempted. Suppose, at some time t, a quantum of
length q that maximizes the job rank R begins processing. Now, consider some time t′ < t + q. Gipp does not
recompute the rank and the quantum until the completion of q, but in a more complex problem setting where jobs
arrive at their individual release dates this might become essential. At time t′, the new maximum job rank R′ is, by
Proposition 2.1(a), at least as large as R and, as Proposition 2.1(b) states, the new quantum that causes the new
rank R′ has length q′, which is not greater than the remaining part of quantum q, that is, q′ ≤ q − 4t′ − t5.

Turning back to the Gipp policy, recall that it runs job quanta in nonincreasing order of rank. We assume that
quanta 4j1151 4j1251 : : : 4j1 nj5 are naturally indexed in order of occurrence. Now, we define the set H4j1 i5 of all
quanta that are processed no later than quantum 4j1 i5 in the Gipp order, assuming that the jobs have not already
finished. Let Q be the set of all quanta, that is, Q = 84k1 l5 � k = 11 : : : 1 n1 l = 11 : : : 1 nk9, then

H4j1 i5=
{

4k1 l5 ∈Q �Rk4ykl5 > Rj4yji5
}

∪
{

4k1 l5 ∈Q �Rk4ykl5=Rj4yji5∧ k ≤ j
}

0

Since the Gittins index of a job is decreasing with every finished quantum (Proposition 2.1(c)), we know that
H4j1h5⊆H4j1 i5, for h≤ i. To uniquely relate higher priority quanta to exactly one quantum of a job, we introduce
the notation H ′4j1 i5=H4j1 i5\H4j1 i−15, where we define H4j105= �. Note that the quantum 4j1 i5 is also

q

Rj (q, y)

pj – y

pj – y

wj

Rj (y) = pj – y

wj

pj
pj

wj

y

(a) The rank of a sub-job of length q after y units
of processing

(b) The maximum rank of a job after it has
been processed for y units of time

Figure 2. Rank functions in the special case of deterministic processing times.
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contained in the set of its higher priority quanta H ′4j1 i5. In the same manner, we define the set of lower priority
quanta as L4j1 i5=Q\H4j1 i5.

With these definitions and the observations above, we can give a closed formula for the expected objective value
of Gipp when scheduling an instance I0 in which all jobs are released at time 0.

Lemma 2.1. The optimal policy Gipp achieves for an instance I0 of 1 � pmtn � Ɛ6
∑

wjCj 7 an expected objective
value of

Ɛ6Gipp4I057=
∑

j∈J

wj

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

Pr6P j > yji ∧P k > ykl7 · Ik4qkl1 ykl50

Proof. Consider a realization of processing times p ∈ì and a job j . Let ip be the index of the quantum
in which job j finishes, that is, yjip <pj ≤ yjip + qjip . Gipp processes quanta of jobs that have not completed
nonpreemptively in nonincreasing order of their ranks. Hence,

Cj4p5=
∑

4k1 l5∈H4j1 ip52 pk>ykl

min8qkl1 pk − ykl90 (1)

For an event E, let �4E5 be an indicator random variable that equals 1 if and only if the event E occurs. The
expected value of �4E5 equals the probability that the event E occurs, that is, Ɛ6�4E57= Pr6E7. Additionally, we
denote by �kl the special indicator random variable for the event P k > ykl.

We take expectations on both sides of Equation (1) over all realizations. This yields

Ɛ6Cj 7 = Ɛ

[

∑

h2 yjh<Pj≤yj1 h+1

∑

4k1 l5∈H4j1h52
Pk>ykl

min8qkl1 P k − ykl9

]

= Ɛ

[ nj
∑

h=1

�4yjh <P j ≤ yj1 h+15
∑

4k1 l5∈H4j1h5

�kl · min8qkl1 P k − ykl9

]

= Ɛ

[ nj
∑

h=1

�4yjh <P j ≤ yj1 h+15
h
∑

i=1

∑

4k1 l5∈H ′4j1 i5

�kl · min8qkl1 P k − ykl9

]

= Ɛ

[ nj
∑

i=1

nj
∑

h=i

�4yjh <P j ≤ yj1 h+15
∑

4k1 l5∈H ′4j1 i5

�kl · min8qkl1 P k − ykl9

]

= Ɛ

[ nj
∑

i=1

�4yji <P j5
∑

4k1 l5∈H ′4j1 i5

�kl · min8qkl1 P k − ykl9

]

= Ɛ

[ nj
∑

i=1

�ji
∑

4k1 l5∈H ′4j1 i5

�kl · min8qkl1 P k − ykl9

]

0 (2)

The equalities follow from an index rearrangement and the fact that, by definition, H4j1h5=
⋃h

i=1 H
′4j1 i5 for

any h= 1121 : : : 1 nj and that nj is an upper bound on the actual number of quanta of job j .
For jobs k 6= j , the processing times P j and P k are independent random variables and, thus, the same holds for

their indicator random variables �ji and �kl for any i1 l. Using linearity of expectation, we rewrite (2) as

=

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

Ɛ
[

�ji · �kl · min8qkl1 P k − ykl9
]

=

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

∑

x

x · Pr
[

�ji = �kl = 1 ∧ min8qkl1 P k − ykl9= x
]

=

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

∑

x

x · Pr
[

�ji = �kl = 1
]

· Pr
[

min8qkl1 P k − ykl9= x � �kl = 1
]

=

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

Pr
[

P j > yji ∧P k > ykl
]

· Ɛ
[

min8qkl1 P k − ykl9 � P k > ykl
]

=

nj
∑

i=1

∑

4k1l5∈H ′4j1 i5

Pr6P j > yji ∧P k > ykl7 · Ik4qkl1 ykl51
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where the third equality follows from conditional probability and the fact that either j 6= k, and thus �ji and �kl are
independent, or 4j1 i5= 4k1 l5, and thus the variables �ji and �kl are the same. Weighted summation over all jobs
concludes the proof.

2.1. A note on the running time complexity of Gipp. The time complexity of Gipp is essentially determined
by the running time for computing the rank of a job for a given attained processing time and the corresponding
quantum length. Expressing this running time as a function of the input requires the specification of the input
encoding, in particular the encoding of the probability distributions of processing times.

Assume for each job j a finite discrete processing time distribution with a finite number of realizations Mj .
Proposition 2.1 implies a partition of jobs into relevant quanta of maximum rank. For discrete distributions, the
length of the ith quantum (i = 1121 : : : 1Mj) is the difference between the 4i− 15st and ith processing time
realization. Hence, we can compute all Gipp-relevant ranks of j and the corresponding quanta in time O4Mj5. This
partition into quanta and rank computation can be done for each job individually and in advance—although, in an
actual implementation one would avoid that. Now, Gipp as described in Algorithm 2, sorts these job quanta by
their ranks, which takes O4M logM5, where M =

∑

j Mj . Finally, Gipp runs through this sorted list of job quanta
and processes each quantum of unfinished jobs, which takes linear time. Thus, the overall time complexity for
arbitrary finite discrete distributions is O4M logM5.

The most general type of such probability distributions is given explicitly by a list of possible realizations with
corresponding probabilities. In that case the encoding length is ä4M5 and therefore Gipp runs in polynomial time
in the input size.

Many (discrete) probability distributions can be encoded in a much more concise manner and Gipp may not run
in polynomial time. Nevertheless, there are again special cases with special structures that allow to compute the
rank of a job and the corresponding quantum in polynomial time. For example, if the processing times are
uniformly distributed over the integer values in a certain range, then the length of the first quantum is equal to the
maximum possible realization.

3. A stochastic fast single-machine relaxation. In this section, we derive a lower bound for preemptive
stochastic scheduling on parallel machines. We utilize the knowledge about Gipp’s optimality for the single-machine
problem without release dates; see Theorem 2.1. To that end, we show first that the fast single-machine relaxation
as introduced by Chekuri et al. [4] for the deterministic (online) scheduling environment applies in the preemptive
stochastic setting as well. Note that the same is not true for nonpreemptive stochastic scheduling. This is in
contrast to the deterministic scheduling environment, where the fast single-machine relaxation applies to both the
preemptive and the nonpreemptive setting.

Let I denote a scheduling instance of the parallel-machine scheduling problem P � rj1pmtn � Ɛ6
∑

wjCj 7, and
let I ′ be the same instance to be scheduled on a single machine—called fast single machine—of speed m times the
speed of the machines used for scheduling instance I . Let Opt1 denote an optimal single-machine policy that
yields an expected value Ɛ6Opt14I

′57 on instance I ′.

Lemma 3.1. The expected value of any parallel-machine policy ç applied to the parallel-machine scheduling
instance I is bounded from below by the expected value of an optimal policy Opt1 on instance I ′ on a fast single
machine, that is,

Ɛ6ç4I57≥ Ɛ6Opt14I
′570

Proof. Given a parallel-machine policy ç, we design a policy ç′ for a fast single machine, that processes the
same set of jobs as ç between any two consecutive decision points. In particular, we guarantee that at any such
decision point, ç′ has observed the same partial schedule as ç such that it can imitate ç’s decisions. A crucial
fact to do so is that for discrete processing time distributions, we can determine at any moment in time t the
earliest possible completion time of the jobs that are scheduled by ç at time t.

Beginning at t = 0, we determine at any decision point t for ç′ the next tentative decision point t′ as the
minimum of this earliest possible completion time and the first tentative decision point of ç after time t. Note that
during 4t1 t′5 no job can complete in ç and each machine processes at most one job during this interval. Then
in ç′, we partition the interval 4t1 t′7 into m equal-length intervals and in the ith interval we process the job that
was processed on machine i by ç. This way, we ensure that ç′ processes the same volume of the same set of jobs
during this interval. Moreover, if in the schedule constructed by policy ç a job completes during this interval,
then this happens at time t′. In ç′ this job will then be completed at or before time t′, depending on which
machine this job was processed. As a job scheduled on the fast single machine according to ç′ finishes not later
than this job when scheduled on the parallel machines according to ç, we have that Ɛ6ç′4I ′57≤ Ɛ6ç4I57 for any
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instance I . Then the lemma follows since an optimal policy Opt1 yields on the single machine an expected
objective value Ɛ6Opt14I

′57≤ Ɛ6ç′4I ′57. �
Note that for processing times that are drawn from continuous probability distributions, the construction of a

single-machine policy ç′ from a given parallel-machine policy ç as described in the proof above fails. At some
decision point t of ç′ it may not be possible to determine the next tentative decision point t′ > t since the earliest
possible completion time of the jobs that are scheduled by ç at time t may be arbitrarily close to t. In the
appendix we show how we can cope with this issue at the cost of loosing an (arbitrarily small) constant factor on
the lower bound.

We may relax the fast-single machine instance I ′ further by setting all release dates to 0. The optimal
single-machine policy for the resulting instance is Gipp (Theorem 2.1). With the closed formula for the expected
cost of Gipp (Lemma 2.1) and the above Lemma 3.1, we conclude a lower bound on the expected optimal value
for the parallel-machine instance I with release dates. In fact, we directly get a relation between the expected value
of Gipp4I05 and Opt4I5, where Gipp4I05 is the expected value of the single-machine policy Gipp (without speed
modification) applied to instance I0, which is obtained from I by relaxing all release dates to 0.

Theorem 3.1. The expected value of an optimal policy Opt for the parallel-machine problem I is bounded by

Ɛ6Opt4I57≥
1
m

∑

j∈J

wj

nj
∑

i=1

∑

4k1 l5∈H ′4j1 i5

Pr
[

P j > yji ∧P k > ykl
]

· Ik4qkl1 ykl5=
Ɛ6Gipp4I057

m
1

where I0 is the same instance as I without release dates to be scheduled on a single machine (of the same speed
as machines in I).

4. A 2-approximative policy for parallel machines. Simple examples show that Gipp is not an optimal policy
for scheduling problems with release dates and/or multiple machines. The following policy, F-Gipp, is a coarse
generalization of Gipp to the parallel-machine problem with nontrivial release dates, P � rj1 pmtn � Ɛ6

∑

wjCj 7. We
call a job available at time t, if it is released and has not been completed by t.

Algorithm 3 (Follow Gittins index priority policy (F-Gipp))
At any time t, process m available jobs j with highest rank Rj4yj1 k+15, where 4j1 k5 is the last quantum of j that
has been completed. If there are less than m jobs available, process all jobs. Define k = 0 if no quantum of job j
has been completed.

Note that the decision time points in this policy are release dates and any time point when a quantum or a job is
completed. In contrast to the original Gittins index priority policy, F-Gipp considers only the rank Rj4yji =

∑i−1
k=1 qjk5

that a job had before processing quanta 4j1 i5 even if 4j1 i5 has been processed for some time less than qji.
Informally speaking, F-Gipp updates the ranks only after quantum completions and then follows Gipp.

Theorem 4.1. F-Gipp is a 2-approximation for the preemptive stochastic scheduling problem P � rj1
pmtn � E6

∑

wjCj 7 with nontrivial release dates on parallel machines.

Proof. For a given instance I , fix a realization p ∈ì of processing times and consider a job j and its
completion time CF-Gipp

j 4p5. Job j is processing in the time interval 6rj1C
F-Gipp
j 4p57. We split this interval into two

disjunctive sets of subintervals, T 4j1p5 and T̄ 4j1 p5. Let T 4j1p5 denote the set of subintervals in which job j is
processing and T̄ 4j1 p5 contains the remaining subintervals. Denoting the total length of all intervals in a set T
by �T �, we have

CF-Gipp
j 4p5= rj + �T 4j1p5� + �T̄ 4j1 p5�0

The total length of intervals in T 4j1p5 is, by definition, pj . In intervals of the set T̄ 4j1 p5, no machine is idle and
F-Gipp schedules only quanta with a higher priority than 4j1 ip5, the final quantum of job j . Thus, �T̄ 4j1p5� is
maximized if all these quanta are scheduled between rj and CF-Gipp

j 4p5. This gives an upper bound on the overall
length �T̄ 4j1 p5�, which is the sum of all realized quantum lengths on m machines. That yields

CF-Gipp
j 4p5≤ rj +pj +

1
m

∑

4k1 l5∈H4j1 ip52
pk>ykl

min8qkl1 pk − ykl9= rj +pj +
1
m

C
Gipp4I05
j 1

where C
Gipp4I05
j denotes the completion time of job j when scheduled by Gipp on a single machine neglecting

release dates. Weighted summation over all jobs and taking expectations on both sides gives

∑

j∈J

wj Ɛ
[

CF-Gipp
j

]

≤
∑

j∈J

wj4rj + Ɛ6P j 75+
Ɛ6Gipp4I057

m
0
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Finally, we apply the trivial lower bound Ɛ6Opt7≥
∑

j∈J wj4rj + Ɛ6P j 75 and Theorem 3.1, and the approximation
result follows. �

For general input instances the approximation factor of 2 is best possible for F-Gipp. This follows directly from
a deterministic worst-case instance in Megow and Schulz [18] since F-Gipp coincides for deterministic instances
with a parallel-machine generalization of the Wspt rule considered in that paper.

Theorem 4.2 (Megow and Schulz [18]). The approximation ratio of F-Gipp is not better than 2 for the
problem P � rj1 pmtn � Ɛ6

∑

wjCj 7, for any given number of machines.

5. Further remarks. In this paper, we presented a natural extension of the policy Gipp, which is an optimal
policy for the single-machine scheduling problem with no nontrivial release dates, to the parallel-machine problem
with nontrivial release dates. The policy F-Gipp that we presented has an approximation ratio of 2, which is tight
even in the case that there is only a single machine and the processing times are deterministically known (Schulz
and Skutella [31]).

An alternative preemptive policy. An alternative, even more straightforward generalization of Gipp is as follows:
instead of recomputing the rank of a job only after a quantum has completed, as F-Gipp does, we consider at any
time the actual rank of a job. We denote this policy as Generalized-Gipp (Gen-Gipp). It deviates much less from
the original Gittins index priority rule, and thus it uses more information on the actual state of the set of known,
unfinished jobs. The analysis of Gen-Gipp is much more involved, but yields the same guarantee of 2 for the
single machine setting (Megow [17], Megow and Vredeveld [21]). However, we were not able to prove tightness
and we conjecture that the true approximation ratio is much lower. As one supporting argument we note that with
deterministic input and equal weights for all jobs, Gen-Gipp yields an optimal solution, since it obtains the same
schedule as Schrage’s optimal rule (Schrage [29]), which is not true for F-Gipp. A lower bound on Gen-Gipp’s
approximation guarantee is 10215, which is again true even for deterministic input (Xiong and Chung [43]).
Gen-Gipp can be applied to parallel machines using a random job-to-machine assignment; it then yields the same
approximation guarantee of 2 in expectation.

Stochastic online scheduling. The policy presented in this paper is valid in an online setting in which jobs are
not known in advance but arrive online over time, the so-called stochastic online scheduling model. F-Gipp
employs Gipp in an online way: at any moment in time it bases its decisions on the Gittins index or rank of each
job, which is a dynamic value that depends on the probability distribution of the job’s processing time and
information about the current status of the job in the schedule. Thus, F-Gipp is not only nonanticipatory, which is
enforced by the stochastic scheduling model, but also online. At no point in time do any of the policies use
information about jobs that will be released in the future.

The performance of a policy in the stochastic online scheduling model is assessed by comparing its expected
value with an optimal offline policy in the traditional stochastic scheduling model. Therefore, the Gittins index-based
lower bound on an expected optimal value in §3 still holds in this generalized model. Thus, Theorem 4.1
directly implies that F-Gipp yields an approximation ratio of 2 for the online version of the stochastic scheduling
problem P � rj1 pmtn � Ɛ6

∑

wjCj 7.
Continuous distributions. We presented results assuming discrete probability distributions for processing times.

The main reason is that our policy relies on the optimality of Gipp which is proven in Sevcik [33] under this
assumption. Moreover, the alternative proof in Weiss [41] considers a slightly modified model in which jobs may
be preempted only after a certain part of a job has been completed. For continuous probability distributions, we
can easily show that Gipp ≤ Opt + �, for any � > 0. Furthermore, our fast single-machine relaxation (Lemma 3.1)
can be adopted to give a bound on the expected optimum value for arbitrary continuous distributions being only
slightly weaker than its discrete equivalent in Theorem 3.1. Combining both, we conclude that F-Gipp yields
a 42 + �5-approximation for scheduling instances with job processing times that are drawn from continuous
distributions. For the sake of completeness, we give the corresponding proofs in the appendix.

Acknowledgments. The authors thank the anonymous referees and the associate editor for helpful suggestions and
motivation to discuss the time complexity of Gipp and the situation of nondiscrete probability distributions. An extended
abstract with parts of this work appeared in the Proceedings of the 14th Annual European Symposium on Algorithms (Megow
and Vredeveld [20]). The research of the first authors was partially supported by the DFG (Deutsche Forschungsgemeinschaft)
Research Center Matheon Mathematics for key technologies in Berlin and the DFG Emmy Noether Programme (ME 3825/1).
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Appendix A. Continuous probability distributions for processing times. We consider processing times that follow
independent finite continuous probability distributions.

Definition A.1. A scheduling policy ç is called a nonretrospective policy if at any decision moment t it makes its
decisions based only on the knowledge it has about the jobs that have not yet been completed by time t. Thus, it uses neither
the realizations of the processing times of already completed jobs nor the time t.

Lemma A.1. There exists an optimal policy to minimize the expected total weighted completion time on a single machine
that is nonretrospective.

Proof. We first show that the decision that an optimal policy makes, given a certain partial schedule, does not depend on
the actual time instant at which it is taken. Hereto, consider an instance I , an optimal policy ç0 that can start scheduling all
jobs in I from time 0 onward (denoted as the time-0 case) and an optimal policy çt for the case that the jobs in I can only be
started at or after time t > 0 (denoted as the t-shifted case).

At time t, a policy for the t-shifted case has exactly the same information as a policy for the case in which jobs can start
from time 0 on. Thus, we can construct a second policy for the t-shifted case, ç′

t , that follows policy ç0. That means, at time
t + s, ç′

t will process the same job as ç0 does at time s. For the time-0 case, we can define in a similar way the policy ç′
0 that

follows policy çt : at time s, ç′
0 processes the same job as policy çt does at time t + s. Then, the expected total weighted

completion times of these policies are

Ɛ6ç′

t4I57 =
∑

j

wj Ɛ6C
ç′
t

j 7=
∑

j

wj Ɛ6C
ç0
j + t7= Ɛ6ç04I57+

∑

j

wj t

Ɛ6ç′

04I57 =
∑

j

wj Ɛ6C
ç′

0
j 7=

∑

j

wj Ɛ6C
çt
j − t7= Ɛ6çt4I57−

∑

j

wj t0

As çt is an optimal policy for the t-shifted case and ç0 is an optimal policy for the time-0 case, we know that

Ɛ6ç7t4I5≤ Ɛ6ç′

t4I57= Ɛ6ç04I57+
∑

j

wj t ≤ Ɛ6ç′

04I57+
∑

j

wj t = Ɛ6çt4I570

Hence, both inequalities need to hold with equality and policy ç′
t that makes exactly the same decisions as policy ç0, optimal

for the time-0 case, is also optimal for the t-shifted case.
Secondly, we argue that the decisions made at a decision point t cannot be based on the processing time realizations of jobs

that have been finished by time t. This follows directly from the fact that the processing time distributions are independent.
Hence, by finishing a job we do not gain any information about other jobs.

As the decision made at a certain decision time by an optimal policy does not depend on the processing time realizations
of jobs that have been completed by this time, nor does it depend on the time at which the decision is made, an optimal
policy bases its decisions only on the information it has on the jobs that are still unfinished. Thus an optimal policy is
nonretrospective. �

In the following lemma, we show that Gipp approximates an optimal policy arbitrarily well for instances with continuous
probability distributions for processing times. Hereto, given a nonretrospective policy ç, an instance I0 and � > 0, we construct
a discretized instance Iç, that has the same set of jobs, but the processing time distributions are discretized. To do so, we
determine for each job j , for each possible realization of the processing times and for each tentative decision point of ç at
which job j has not been completed, the amount of processing job j receives up to the next tentative decision point assuming
that j does not complete before that. This way, we obtain distinct values xj11 < xj12 < · · ·< xj1Mj

(some of which may occur
multiple times) of possible attained processing at tentative decision points. To these values, we add the values yji of attained
processing time up to quantum 4j1 i5 as defined in §2. Moreover, whenever xj1 i+1 − xj1 i >�, with �= �/4n

∑

j wj5, we add
some more values between xj1 i and xj1 i+1 so that the maximum distance between two consecutive values is at most �. Abusing
notation, we denote these values still by xj11 < xj12 < · · ·< xj1Mj

. Note that, although the number of possible realizations can
be unbounded because of the fact that the processing time distributions are continuous, we can still determine all values xj1 i
because the policy ç is nonretrospective: if a job j completes at or before a tentative decision point, the next decision made by
the nonretrospective policy ç is independent of the realization of the processing time for j . Hence, all realizations for the
processing time of job j within this particular interval can be considered as one realization for the determination of the xj1 i
values. The instance Iç has the following probability distributions for processing times P ′

j :

Pr6P ′

j = xj1 i7= Pr6xj1 i−1 <Pj ≤ xj1 i71 for i = 11 : : : 1Mj 1 and xj10 = 00

Lemma A.2. Let I0 denote an instance for the stochastic scheduling problem of minimizing the expected total weighted
completion time on a single machine, and assume there are job processing times that follow finite continuous probability
distributions. Then

Gipp4I05≤ Opt14I05+ �1

for any � > 0, where Opt1 is an optimal single-machine policy for instance I0.
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Proof. We convert any nonretrospective policy ç on instance I0 into a policy ç′ for instance Iç. Policy ç′ makes exactly
the same decisions as policy ç. Because of the discretization of Iç, we know that if a certain job j is completed by ç at or
before a tentative decision point, its counterpart in Iç will also be completed at or before the corresponding tentative decision
point by ç′. Moreover, as xj1 i+1 − xj1 i ≤ �, we also know that at each completion, the time for policy ç′ is shifted by at
most � time units. Since the policy ç is nonretrospective, we know that at the completion time of the job, ç will base its
decisions only on the set of jobs that is still available, that is, the same set of jobs that is available for ç′, having the same
attained processing time. Hence, ç′ has indeed the same information as ç had at time of the job completion, and thus, ç′ can
imitate the decision of ç. There is a delay in this action by at most � per completing job. Therefore, on every realization of
processing times for I , we know that policy ç′ on the corresponding realization of processing times of Iç, finds completion
times that are at most n� larger. Hence, we have that

Ɛ6ç′4Iç57=
∑

j

wj Ɛ6C
ç′

j 7≤
∑

wj4Ɛ6C
ç
j 7+ n�5= Ɛ6ç4I057+

∑

j

wjn�0

By choosing, �= �/4n
∑

j wj5, ç4I5= Opt14I05 and the fact that Iç only has discrete probability distributions, for which Gipp
is an optimal policy, we know that

Gipp4I5≤ Gipp4Iç5≤ Ɛ6ç′4Iç57≤ Ɛ6Opt4I057+ �0

To see the first inequality, note that because of the properties of the rank given in Proposition 2.1 and the fact that the values yji
of attained processing time up to quantum 4j1 i5 are possible realizations in Iç, as long as no job completes Gipp4Iç5 makes the
same decisions as Gipp4I5 and we have that Gipp4I5≤ Gipp4Iç5. �

In the following lemma, we show that the lower bound on the value of any policy given in Lemma 3.1 holds with an
additive �, for any � > 0.

Lemma A.3. For any � > 0, we have that the expected value of any parallel-machine policy ç applied to the parallel-
machine scheduling instance I is bounded from below by the expected value of an optimal policy Opt1 on instance I ′ on a fast
single machine, that is

Ɛ6ç4I57≥ Ɛ6Opt14I
′57− �1

where I ′ is the same instance as I , but to be scheduled on a single machine with speed m times the speed of the machines used
for scheduling instance I .

Proof. In the proof of Lemma 3.1, we defined a policy ç′ that schedules jobs on a fast single machine, that mimics a
given policy ç. To ensure that ç′ completes each job not later than the policy ç, we used the fact that at any time t we can
determine the earliest possible completion time of any job that is scheduled at time t. However, this is not true anymore, when
some of the processing times have continuous probability distributions. To overcome this issue, we set the time between two
consecutive decision points in ç′ to be at most �, for some � depending on �. The time intervals between two consecutive
tentative decision times in ç′ are mapped one-to-one to intervals in the schedule produced by ç of at most the same length.
Such a time interval in ç′ is partitioned into m equal lengths subintervals and the ith subinterval is dedicated to the processing
of the job that is processed on machine i during the corresponding interval of policy ç. If no job completes during a time
interval of ç′, then the corresponding interval of ç has the same length and ç′ processes the same set of jobs as ç such that at
the end of the interval these jobs have received the same amount of processing as in ç. On the other hand, if there is a job that
completes in an interval between two consecutive tentative decision times, then the corresponding interval of ç will be shorter:
it will be equal to the time between the start of the interval and the earliest job completion thereafter. During this interval, ç′

processes the same set of jobs as ç processes during the corresponding interval. However, because of the fact that ç′ may only
learn at the end of its interval about the job completion, e.g., when the job that will finish during the interval is scheduled on
machine m in the schedule produced by ç, at the end of the interval ç′ may have given the jobs more processing than ç did at
the end of its corresponding interval. Therefore, the end of the interval in ç′ may be shifted by at most � time units compared
to the end of the corresponding interval in ç. Note that ç′ still can follow what ç does, because ç′ knows the exact time of
the earliest job completion and can determine how much processing each of the other jobs would have attained until this time
(as ç′ may have processed some jobs a bit longer, but not shorter). As these shifts can only occur when there is a job
completion, a time interval between two consecutive tentative decision times in ç′ can only be at most n� away from the
corresponding time interval in the schedule produced by ç. Using this fact, and the fact that a job in ç may be completed at
the beginning of an interval whereas in ç′ it can be completed almost at the end of the corresponding interval, the completion
time of a job j in ç′ cannot be more than 4n+ 15� away from its completion time in the execution of ç.

From the discussion above, we know that

Ɛ6Cç′

j 4I ′57≤ Ɛ6Cç
j 4I57+ 4n+ 15�0

By setting �= �/44n+ 15
∑

j wj5, we have

Ɛ6Opt14I
′57≤ Ɛ6ç′4I ′57=

∑

j

wj Ɛ6C
ç′

j 4I ′57≤
∑

j

wj Ɛ6C
ç
j 4I57+

∑

j

wj4n+ 15�= Ɛ6ç4I57+ �0 �
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Using the same argumentation as in §3 for the discrete setting and applying Lemmas A.2 and A.3, we obtain the following
lower bound on the expected optimal value for continuous distributions.

Theorem A.1. The expected value of an optimal policy Opt for the parallel-machine problem I with finite continuous
processing time distributions is bounded by

Ɛ6Opt4I57≥
Ɛ6Gipp4I057

m
− 2 · �1

where I0 is the same instance as I without release dates to be scheduled on a single machine (of the same speed as machines
in I).

From the proof of Theorem 4.1, we know that the value of F-Gipp is bounded by

F-Gipp4I5≤
∑

j∈J

wj4rj + Ɛ6P j 75+
Ɛ6Gipp4I057

m
1

where I0 is the instance obtained from instance I by setting the release dates of all jobs to rj = 0. Now, Theorem A.1 implies
directly the following result.

Theorem A.2. F-Gipp is a (2 + �)-approximation for the preemptive stochastic problem P � rj 1 pmtn � Ɛ6
∑

wjCj 7 of
scheduling jobs with nontrivial release dates on parallel machines, when the processing times are drawn from finite continuous
distributions.
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