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We consider a model for scheduling under uncertainty. In this model, we combine the main characteristics of online and
stochastic scheduling in a simple and natural way. Job processing times are assumed to be stochastic, but in contrast to
traditional stochastic scheduling models, we assume that jobs arrive online, and there is no knowledge about the jobs that
will arrive in the future. The model incorporates both stochastic scheduling and online scheduling as a special case. The
particular setting we consider is nonpreemptive parallel machine scheduling, with the objective to minimize the total weighted
completion times of jobs. We analyze simple, combinatorial online scheduling policies for that model, and derive perfor-
mance guarantees that match performance guarantees previously known for stochastic and online parallel machine scheduling,
respectively. For processing times that follow new better than used in expectation (NBUE) distributions, we improve upon
previously best-known performance bounds from stochastic scheduling, even though we consider a more general setting.
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1. Introduction. Scheduling on identical parallel machines to minimize the total weighted completion time
of jobs, P � ∑

wjCj in the three-field notation of Graham et al. [12], is one of the classical problems in combi-
natorial optimization. The problem plays a role whenever many jobs must be processed on a limited number of
machines or processors, with applications in manufacturing, parallel computing (Chakrabarti and Muthukrishnan
[5]), or compiler optimization (Chekuri et al. [6]). The literature has witnessed many papers on this problem
as well as its variant, where the jobs have individual release dates before which they must not be processed,
P�rj �

∑
wjCj . In the offline (deterministic) setting, where the set of jobs and their characteristics are known in

advance, the complexity status of both problems is solved; both are strongly NP-hard (Lenstra et al. [17]) and
they admit a polynomial time approximation scheme (Afrati et al. [1], Skutella and Woeginger [28]).
To cope with scenarios where there is uncertainty about the future, there are two major frameworks in the

theory of scheduling: (1) stochastic scheduling and (2) online scheduling. In stochastic scheduling, the population
of jobs is assumed to be known beforehand, but in contrast to deterministic models, the processing times of
jobs are random variables. The actual processing times become known only upon completion of the jobs. The
distribution functions of the respective random variables, or at least their first moments, are assumed to be
known beforehand. In online scheduling, the assumption is that the instance is presented to the scheduler only
piecewise. Jobs are either arriving one by one (in the online list model) or over time (in the online time model)
(Pruhs et al. [22]). The actual processing times are usually disclosed upon arrival of a job, and decisions must
be made without any knowledge of the jobs to come.
We consider a model that generalizes both stochastic scheduling and online scheduling. Like in online schedul-

ing, we assume that the instance is presented to the scheduler piecewise, and nothing is known about jobs
that might arrive in the future. Once a job arrives, like in stochastic scheduling, we assume that its expected
processing time is disclosed, but the actual processing time remains unknown until the job completes. Before
we discuss the model and related work in more detail, let us fix some basic notation and definitions.

Model and definitions. Given is a set J = �1� � � � � n
 of jobs, with nonnegative weights wj , j ∈ J . In the
model with release dates, rj denotes the earliest point in time when job j can be started. Each job must be
processed nonpreemptively on any of the m identical machines, and each machine can only handle one job
at a time. The goal is to find a schedule that minimizes the total weighted completion time

∑
j wjCj , where

Cj denotes the completion time of job j . By Pj , we denote the random variable for the processing time of job j ,
by Ɛ
P j�, its expected processing time, and by pj , a particular realization of Pj . The processing time distributions
Pj are assumed to be independent. We assume that the jobs are arriving over time upon their respective release
dates rj in the order 1� � � � � n. Therefore, we can assume w.l.o.g. that rj ≤ rk for j < k. Note that the number
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of jobs n is not known in advance. When a job arrives at time rj , the scheduler is informed about its weight wj
and its expected processing time, Ɛ
P j �.
The goal is to find a stochastic online scheduling �SOS� policy that minimizes the expected value of the

weighted completion times of jobs, Ɛ

∑
wjCj�. Our definition of an SOS policy extends the traditional definition

of stochastic scheduling policies by Möhring et al. [20] to the setting where jobs arrive online. A scheduling
policy specifies actions at decision times t. An action is a set of jobs that is started at time t, and a next decision
time t′ > t at which the next action is taken, unless some job is released or ends at time t′′ < t′. In that case,
t′′ becomes the next decision time. To decide, the policy may utilize the complete information contained in the
partial schedule up to time t, as well as information about unscheduled jobs that have arrived before t. However,
a policy is required to be online, thus at any time, it must not utilize any information about jobs that will be
released in the future. Moreover, it needs to be nonanticipatory, thus at any time, it must not utilize the actual
processing times of jobs that are scheduled (or unscheduled) but not yet completed. An optimal scheduling policy
is defined as a nonanticipatory scheduling policy that minimizes the objective function value in expectation.
Note that we do not assume that an optimal policy needs to be online. Note also that even an optimal scheduling
policy generally fails to yield an optimal solution for all realizations of the processing times; this is because it
is nonanticipatory.
For an instance I , consisting of the number of machines m, the set of jobs J together with their release

dates rj , weights wj , and processing time distributions Pj , let S
�
j �I� and C

�
j �I� denote the random variables for

start and completion times of jobs under policy �. We also write S�j and C�j for short. We let

Ɛ
��I��= Ɛ

[∑
j∈J
wjC

�
j �I�

]
=∑

j∈J
wjƐ
C

�
j �I��

denote the expected performance of a scheduling policy � on instance I . Let us denote the above-defined model
as stochastic online scheduling (SOS).
Generalizing the definitions by Möhring et al. in [21] for traditional stochastic scheduling, we define the

performance guarantee of an SOS policy as follows.
Definition 1.1. An SOS policy � is a �-approximation if, for some �≥ 1, and all instances I of the given

problem,
Ɛ
��I��≤ �Ɛ
OPT�I���

Here, OPT�I� denotes an optimal stochastic scheduling policy on the given instance I , assuming a priori knowl-
edge of the set of jobs J , their weights wj , release dates rj , and processing time distributions Pj . The value �
is called the performance guarantee of policy �.
Note that the SOS policy � in this definition does not have a priori knowledge of the set of jobs J , their

weights wj , release dates rj , and processing time distributions Pj . Policy � is an online policy and only learns
about the existence of any job j upon its release date rj . Hence, the policy has to compete with an adversary
that knows the online sequence of jobs in advance. However, with respect to the processing times Pj of the jobs,
the adversary is just as powerful as policy � itself because it does not foresee their actual realizations pj either.
Probably the best-known scheduling policy in stochastic scheduling is the rule weighted shortest expected

processing time (WSEPT) first. Its online version will also play a prominent role in this paper, and is defined
next. To this end, call a job j available at a given time t if it has not yet been scheduled, and if its release date
has passed; that is, if rj ≤ t.
Definition 1.2 (Online WSEPT). At any point in time when a machine is idle, among all jobs that are

available, schedule the job with the highest ratio of weight over expected processing time, wj/Ɛ
P j�.
Whenever release dates are absent, it reduces to the traditional WSEPT rule known from stochastic scheduling

and the jobs appear in the schedule in order of nonincreasing ratios wj/Ɛ
P j�. For unit weights, it reduces to
shortest expected processing time (SEPT) first. For single machine (stochastic) scheduling without release dates,
1� ∑

wjCj , the WSEPT rule is optimal; this follows by a simple job interchange argument (Rothkopf [23],
Smith [30]).

Related work. Stochastic machine scheduling models have been addressed mainly since the 1980s (Demp-
ster et al. [9]). In the traditional stochastic setting, Weiss [34, 35] analyzes the performance of the WSEPT
rule. He derives additive performance bounds for the stochastic parallel machine model without release dates,
P�Ɛ
∑wjCj�. His bounds yield asymptotic optimality of the WSEPT rule for a certain class of processing time
distributions. More recently, approximation algorithms for stochastic machine scheduling have been derived by
Möhring et al. [21] and Skutella and Uetz [27]. In these papers, the expected performance of the WSEPT rule
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and linear programming (LP-)based stochastic scheduling policies are compared against the expected perfor-
mance of an optimal stochastic scheduling policy. The results are constant-factor approximations for models
without or with release dates (Möhring et al. [21]) and also with precedence constraints (Skutella and Uetz [27]).
However, these papers do not address the situation where jobs arrive online.
In contrast to traditional stochastic scheduling, in online scheduling it is assumed that nothing is known about

jobs that are about to arrive in the future. However, once a job becomes known, its weight wj and its actual
processing time pj are disclosed. The quality of online algorithms is assessed by their competitive ratio (Karlin
et al. [15], Sleator and Tarjan [29]). An algorithm is called �-competitive if, for any instance, a solution is
achieved with value not worse than � times the value of an optimal offline solution. In the online time model,
jobs become known upon their release dates rj . In the online list model, jobs are presented one by one, all at
time 0. Upon presentation, a job has to be scheduled immediately before the next job can be seen (at some time
that is feasible with respect to release dates and the already scheduled jobs). We omit further details and refer
to Borodin and El-Yaniv [3] or Pruhs et al. [22].
In the online list model, Fiat and Woeginger [11] show that the single-machine problem 1�rj �

∑
Cj does

not allow a deterministic or randomized online algorithm with a competitive ratio of logn. In the online time
model, Anderson and Potts [2] provide a 2-competitive online algorithm for the same problem. This result
is best possible because Hoogeveen and Vestjens [14] prove a lower bound of 2 on the competitive ratio of
any deterministic online algorithm. For settings with parallel machines, Vestjens [33] proves a lower bound
of 1.309 for the competitive ratio of any deterministic online algorithm for P�rj �

∑
wjCj , even for unit weights.

The currently best-known deterministic algorithm for P�rj �
∑
wjCj is 2.62-competitive, proposed by Correa and

Wagner [8]. The currently best-known randomized algorithm for the problem has an expected competitive ratio
of 2 (see Schulz and Skutella [26]).
A model that combines features of stochastic and online scheduling has also been considered by

Chou et al. [7]. They prove asymptotic optimality of the online WSEPT rule for the single-machine problem
1�rj �

∑
wjCj , assuming that the weights wj and processing time pj can be bounded from above and below by

constants. The definition of the adversary in their paper coincides with our definition. Hence, asymptotic opti-
mality means that the ratio of the expected performance of the WSEPT rule over the expected performance of
an optimal stochastic scheduling policy tends to 1 as the number of jobs tends to infinity.
A different type of analysis for stochastic scheduling has been proposed by Scharbrodt et al. [24] and Souza

and Steger [31]. Both papers address the parallel machine model without release dates. They compare the
performance of the (W)SEPT rule to the optimal solution per realization, and take the expectation of this ratio on
the basis of the given processing time distributions. Their analysis is thus different from the traditional stochastic
scheduling model; in particular, it is not based on a comparison to the optimal stochastic scheduling policy. The
underlying adversary is stronger than in traditional stochastic scheduling, yet they derive constant bounds on
what they call the expected competitive ratio.
Subsequently to our work and inspired by a recent paper (Correa and Wagner [8]), Schulz [25] gave a

randomized 3-approximation policy for the stochastic online version of P�rj �Ɛ

∑
wjCj�, under the assumption

of a certain class of processing time distributions. As stated in his paper, a derandomized version of this policy
matches our performance guarantee for this special class of processing time distributions.

Results and methodology. We propose simple, combinatorial online scheduling policies for SOS models
on parallel machines with and without release dates, and derive constant performance bounds for these policies.
For identical parallel machine scheduling without release dates, P�Ɛ
∑wjCj�, the performance guarantee is

�= 1+ �m− 1���+ 1�
2m

�

Here, � is an upper bound on the squared coefficients of variation of the processing time distributions Pj , that is,
Var
P j�/Ɛ
P j�

2 ≤� for all jobs j . This performance guarantee matches the previously best-known performance
guarantee of Möhring et al. [21]; they obtain the same bound for the performance of the WSEPT rule in
the traditional stochastic scheduling model. However, we derive this bound in a more restricted setting than
traditional stochastic scheduling. We consider a stochastic online model where the jobs are presented to the
scheduler sequentially, and the scheduler must immediately and irrevocably assign jobs to machines, without
knowledge of the jobs to come. Once the jobs are assigned to the machines, the jobs on each machine can be
sequenced in any order. We thus show that there exists a stochastic online policy in this restricted setting that
achieves the same performance guarantee as the above-mentioned bound for the WSEPT rule. (The traditional
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WSEPT rule is not a feasible policy in this setting because the assignment of jobs to machines depends on the
realizations of processing times.)
For the model with release dates, we prove a slightly more complicated performance guarantee that is valid

for a class of processing time distributions that we call �-NBUE, generalizing the well-known class of NBUE
distributions (new better than used in expectation).
Definition 1.3 (�-NBUE). A nonnegative random variable X is �-NBUE if, for �≥ 1, Ɛ
X − t �X > t�≤

�Ɛ
X� for all t ≥ 0.
For identical parallel machine scheduling with release dates P�rj �

∑
wjCj and �-NBUE distributions, we obtain

a performance guarantee of

�= 1+max
{
1+ �

�
��+ �+ �m− 1���+ 1�

2m

}
�

Here, � > 0 is an arbitrary parameter, and again, � is an upper bound on the squared coefficients of variation
Var
P j�/Ɛ
P j�

2 of the processing time distributions Pj . For example, for ordinary NBUE distributions, where
�= �= 1, we obtain a performance guarantee � < 3�62− 1/�2m�. Thereby, we improve upon the previously
best-known performance guarantee of 4− 1/m for traditional stochastic scheduling, which was derived for an
LP-based list scheduling policy (Möhring et al. [21]). Again, this improved bound holds even though we consider
an online model in which the jobs arrive over time, and the scheduler does not know anything about the jobs
that are about to arrive in the future. Moreover, for deterministic processing times, where �= 0 and �= 1, we
obtain a performance guarantee �< 3�281, matching the bound from deterministic online scheduling by Megow
and Schulz [18].
For both models, our results are, in fact, achieved by fixed assignment policies. That is, whenever a job is

presented to the scheduler, it is immediately and irrevocably assigned to a machine. The sequencing of jobs on
the individual machines is, in both cases, an online version of the traditional WSEPT rule.

2. Discussion and further preliminaries. As a matter of fact, results in stochastic scheduling either rely on
the traditional (W)SEPT rule (Möhring et al. [21], Scharbrodt et al. [24], Souza and Steger [31], Weiss [34, 35])
for models without release dates, or they use LP-relaxations to define list scheduling policies other than WSEPT
(Möhring et al. [21], Skutella and Uetz [27]). As soon as we assume that jobs arrive online, the approaches of
these papers fail: The traditional offline (W)SEPT rule cannot be implemented because it requires an a priori
ordering of jobs in order of ratios wj/Ɛ
P j �. To obtain the results for models with release dates, Möhring et al.
[21] use optimal LP-solutions not only for the purpose of analysis, but also to define the corresponding list
scheduling policies. Although we still use the same LP-relaxation as Möhring et al. [21] within our analysis, the
main difference lies in the fact that the algorithms we propose are combinatorial, and do not require the solution
of linear programs.
As in traditional online optimization, the adversary in the proposed stochastic online (SOS) model may

choose an arbitrary sequence of jobs. These jobs, however, are stochastic with corresponding processing time
distributions. The actual processing times are realized according to exogenous probability distributions. Thus,
the best the adversary can do is indeed to use an optimal stochastic scheduling policy in the traditional definition
of stochastic scheduling policies by Möhring et al. [20]. In this view, our model somewhat compares to the idea
of a diffuse adversary as defined by Koutsoupias and Papadimitriou [16]. Because deterministic processing times
are contained as a special case, however, all lower bounds on the approximability known from deterministic
online scheduling also hold for the SOS model of this paper. Hence, no SOS policy can exist with a performance
bound better than 1.309 (Vestjens [33]).
Observe that the expected performance of any stochastic online policy is by definition no less than the expected

performance of an optimal policy for a corresponding traditional stochastic problem, where the set of jobs J ,
their release dates rj , weights wj , and processing time distributions Pj are given at the outset. Hence, lower
bounds on the expected objective value of an optimal stochastic scheduling policy carry over to the stochastic
online setting that we consider in this paper. Therefore, we have the following lower bound on the performance
of any SOS policy; it is a generalization of a lower bound by Eastman et al. [10] to stochastic processing times.

Lemma 2.1 (Möhring et al. [21]). For any instance I of P�rj �Ɛ

∑
wjCj�, we have that

Ɛ
OPT�I��≥∑
j

wj
∑
k∈H�j�

Ɛ
P k�

m
− �m− 1���− 1�

2m

∑
j

wjƐ
P j ��

where � bounds the squared coefficient of variation of the processing times, that is, Var
P j�/Ɛ
P j�
2 ≤� for all

jobs j = 1� � � � � n and some �≥ 0.
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Here, we have used a piece of notation that comes handy also later. For a given job j ∈ J , H�j� denotes the
jobs that have a higher priority in the order of ratios wj/Ɛ
P j�, that is,

H�j�=
{
k ∈ J

∣∣∣∣ wk
Ɛ
P k�

>
wj

Ɛ
P j�

}
∪
{
k≤ j

∣∣∣∣ wk
Ɛ
P k�

= wj

Ɛ
P j�

}
�

Accordingly, we define
L�j�= J\H�j�

as those jobs that have lower priority in the order of ratios wj/Ɛ
P j�. As a tie-breaking rule for jobs k with equal
ratio wk/Ɛ
P k�= wj/Ɛ
P j�, we decide depending on the position in the online sequence relative to j . That is,
if k≤ j , then k belongs to set H�j�, otherwise it is included in set L�j�. Note that, by convention, we assume
that H�j� also contains job j .

3. Stochastic online scheduling on a single machine. In this section, we consider the SOS problem on a
single machine. When release dates are absent, it is well known that the WSEPT rule is optimal (Rothkopf [23],
Smith [30]).
For the problem of scheduling jobs with nontrivial release dates on a single machine, the currently best-known

result from traditional stochastic scheduling is an LP-based list scheduling algorithm with a performance bound
of 3 (Möhring et al. [21]). Inspired by a corresponding algorithm for the deterministic online setting on parallel
machines from Megow and Schulz [18], we propose the following scheduling policy.
Algorithm 1 (�-Shift-WSEPT). Modify the release date rj of each job j to r

′
j =max�rj ��Ɛ
P j�
 for some

fixed � > 0. At any time t, when the machine is idle, start the job with the highest ratio wj/Ɛ
P j� among all
available jobs, respecting the modified release dates. (In case of ties, smallest index first.)
We first derive an upper bound on the expected completion time of a job, Ɛ
C�j �, when scheduling jobs on a

single machine according to the �-Shift-WSEPT policy.

Lemma 3.1. Let all processing times be �-NBUE. Then, the expected completion time of job j under
�-Shift-WSEPT on a single machine can be bounded by

Ɛ
C�j �≤ �1+ �/��r ′j +
∑
k∈H�j�

Ɛ
P k��

Proof. We consider some job j . Let X denote a random variable measuring the remaining processing time
of a job being processed at time r ′j if such a job exists. Otherwise, X has value 0. Moreover, for any job k, let "k
be an indicator random variable that equals 1 if and only if job k starts processing at the earliest at time r ′j ,
i.e., "k = 1 if and only if S�k ≥ r ′j . The start of job j will be postponed beyond r ′j by X, and until there are no
more higher priority jobs available. Hence, the expected start time of job j can be bounded by

Ɛ
S�j � ≤ Ɛ

[
r ′j +X+ ∑

k∈H�j�\�j

Pk"k

]

= r ′j + Ɛ
X�+ ∑
k∈H�j�\�j


Ɛ
Pk"k�

≤ r ′j + Ɛ
X�+ ∑
k∈H�j�\�j


Ɛ
Pk��

where the last inequality follows from the fact that Pk"k ≤ Pk for any job k.
Next, we show that Ɛ
X�≤ ��/��r ′j . If the machine just finishes a job at time r ′j or is idle at that time, X has

value 0. Otherwise, some job # is in process at time r ′j . Note that this job might have lower or higher priority
than job j . Such job # was available at time r ′# < r

′
j , and by definition of the modified release dates, we therefore

know that Ɛ
P #�≤ �1/��r ′# < �1/��r ′j for any such job #. Moreover, letting t = r ′j − S�# , the expected remaining
processing time of such job #, given that it is indeed in process at time r ′j , is Ɛ
P #− t � P# > t�. Because of the
assumption of �-NBUE processing times, we thus know that

Ɛ
P #− t � P# > t�≤ �Ɛ
P #�≤ ��/��r ′j
for any job # that could be in process at time r ′j . Hence, we obtain Ɛ
X�≤ ��/��r ′j . Finally, the fact that Ɛ
C�j �=
Ɛ
S�j �+ Ɛ
P j � concludes the proof. �
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In fact, it is quite straightforward to use Lemma 3.1 to show the following.

Theorem 3.1. The �-Shift-WSEPT algorithm is a ��+ 2�-approximation for the stochastic online single
machine problem 1�rj �Ɛ


∑
wjCj� for �-NBUE processing times. The best choice for � is �= 1.

Proof. With Lemma 3.1 and the definition of modified release dates r ′j =max�rj ��Ɛ
P j�
, we can bound
the expected value of a schedule obtained by �-Shift-WSEPT:

∑
j

wjƐ
C
�
j � ≤ �1+ �/��∑

j

wj max�rj ��Ɛ
P j�
+
∑
j

wj
∑
k∈H�j�

Ɛ
P k�

= ∑
j

wj max��1+ �/��rj� ��+ ��Ɛ
P j�
+
∑
j

wj
∑
k∈H�j�

Ɛ
P k�

≤ max��1+ �/��� ��+ ��
∑
j

wj�rj + Ɛ
P j��+
∑
j

wj
∑
k∈H�j�

Ɛ
P k��

We can now apply the trivial lower bound
∑
j wj�rj + Ɛ
P j�� ≤ Ɛ
OPT�I��, and exploit the fact that∑

j wj
∑
k∈H�j� Ɛ
P k�≤ Ɛ
OPT�I�� by Lemma 2.1 (for m= 1), and obtain

∑
j

wjƐ
C
�
j �≤

(
1+max

{
1+ �

�
��+ �

})
Ɛ
OPT�I���

Now, �= 1 minimizes this expression, independently of �, and the theorem follows. �

Note that for NBUE processing times, the result matches the currently best-known performance bound of 3
derived by Möhring et al. in [21] for the traditional stochastic scheduling model. Their LP-based policy, however,
requires an a priori knowledge of the set of jobs J , their weights wj , and their expected processing times Ɛ
P j�.
Moreover, in the deterministic online setting, the best-possible algorithm is 2-competitive (Hoogeveen and
Vestjens [14]), hence the corresponding lower bound of 2 holds for the stochastic online setting too.

4. Stochastic online scheduling on parallel machines. In this section, we define SOS policies for the
problem on parallel machines. We first consider the problem without nontrivial release dates, and later generalize
to the problem with nontrivial release dates.

4.1. Scheduling jobs without release dates. In the case that all jobs arrive at time 0, the problem effectively
turns into a traditional stochastic scheduling problem, P�Ɛ
∑wjCj�. For that problem, it is known that the
WSEPT rule yields a �1 + �m − 1��� + 1�/�2m��-approximation, � being an upper bound on the squared
coefficients of variation of the processing time distributions (Möhring et al. [21]).
Nevertheless, we consider an online variant of the problem P�Ɛ
∑wjCj� that resembles the online list model

from online optimization. We assume that the jobs are presented to the scheduler sequentially, and each job
must immediately and irrevocably be assigned to a machine: a fixed assignment policy. In particular, during this
assignment phase, the scheduler does not know anything about the jobs that are still about to come. Once the
jobs are assigned to the machines, the jobs on each machine may be sequenced in any order. We show that an
intuitive and simple fixed assignment policy exists that eventually yields the same performance bound as the one
proved in Möhring et al. [21] for the WSEPT rule. In this context, recall that the WSEPT rule is not a feasible
online policy in the considered online model.
We introduce the following notation: If a job j is assigned to machine i, this is denoted by j→ i. Now, we

can define the MinIncrease policy as follows.
Algorithm 2 (MinIncrease (MI)). When a job j is presented to the scheduler, it is assigned to the

machine i that minimizes the expression

z�j� i� =wj ·
∑

k∈H�j�� k<j�k→i

Ɛ
P k�+ Ɛ
P j� ·
∑

k∈L�j�� k<j�k→i

wk+wjƐ
P j��

Once all jobs are assigned to machines, the jobs on each machine are sequenced in order of nonincreasing
ratios wj/Ɛ
P j�.
Because WSEPT is known to be optimal on a single machine, MinIncrease in fact assigns each job j to that

machine where it causes the least increase in the expected objective value, given the previously assigned jobs.
This is expressed in the following lemma.

Lemma 4.1. The expected objective value Ɛ
MI�I�� of the MinIncrease policy equals
∑
j mini z�j� i� .
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Proof. The assignment of jobs to machines is independent of the realization of processing times. Hence,
the expected completion time Ɛ
Cj� for some job j that has been assigned to machine ij by MinIncrease is

Ɛ
Cj�=
∑

k∈H�j�� k→ij

Ɛ
Pk�

because all jobs that are assigned to the same machine ij are sequenced in order of nonincreasing ratios wj/Ɛ
P j�.
Now, weighted summation over all jobs gives by linearity of expectation

Ɛ
MI�I�� = Ɛ

[∑
j

wjCj

]

= ∑
j

wj
∑

k∈H�j�� k→ij

Ɛ
P k�

= ∑
j

wj
∑

k∈H�j�� k→ij � k<j

Ɛ
P k�+
∑
j

wj
∑

k∈H�j�� k→ij � k>j

Ɛ
P k�+
∑
j

wjƐ
P j��

This allows us to apply the following index rearrangement:
∑
j

wj
∑

k∈H�j�� k>j
Ɛ
P k�=

∑
j

Ɛ
P j �
∑

k∈L�j�� k<j
wk� (1)

Thus, we have

Ɛ
MI�I�� = ∑
j

wj
∑

k∈H�j�� k→ij � k<j

Ɛ
P k�+
∑
j

Ɛ
P j�
∑

k∈L�j�� k→ij � k<j

wk+
∑
j

wjƐ
P j�

= ∑
j

(
wj

∑
k∈H�j�� k→ij � k<j

Ɛ
P k�+ Ɛ
P j�
∑

k∈L�j�� k→ij � k<j

wk+wjƐ
P j�
)

= ∑
j

min
i
z�j� i� �

where the second equality makes use of (1) applied to each individual machine ij , and the last equality holds
because ij is the machine minimizing z�j� i� over all machines i. �

Now, we can derive the following performance guarantee for the MinIncrease policy.

Theorem 4.1. Consider the stochastic online scheduling (SOS) problem on parallel machines, P �Ɛ
∑wjCj�,
as described above. Given that Var
P j�/Ɛ
P j�

2 ≤ � for all jobs j and some constant �≥ 0, the MinIncrease
policy is a �-approximation, where

�= 1+ �m− 1���+ 1�
2m

�

Proof. From Lemma 4.1, we know that Ɛ
MI�I��=∑
j mini z�j� i� , and thus,

Ɛ
MI�I�� = ∑
j

min
i

{
wj

∑
k∈H�j�� k<j�k→i

Ɛ
P k�+ Ɛ
P j�
∑

k∈L�j�� k<j�k→i

wk +wjƐ
P j�
}

≤ ∑
j

1
m

(
wj

∑
k∈H�j�� k<j

Ɛ
P k�+ Ɛ
P j�
∑

k∈L�j�� k<j
wk

)
+∑

j

wjƐ
P j��

where the inequality holds because the least expected increase is not more than the average expected increase
over all machines.
Now, we first apply the index rearrangement (1) as in Lemma 4.1, and then plug in the inequality of

Lemma 2.1. Using the trivial fact that
∑
j wjƐ
P j� is a lower bound for the expected performance Ɛ
OPT�I�� of

an optimal policy, we thus obtain

Ɛ
MI�I�� ≤ 1
m

∑
j

(
wj

∑
k∈H�j�� k<j

Ɛ
P k�+ wj
∑

k∈H�j�� k>j
Ɛ
P k�

)
+∑

j

wjƐ
P j�

= 1
m

∑
j

wj
∑
k∈H�j�

Ɛ
P k�+
m− 1
m

∑
j

wjƐ
P j�
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≤ Ɛ
OPT�I��+ �m− 1���− 1�
2m

∑
j

wjƐ
P j �+
m− 1
m

∑
j

wjƐ
P j�

≤
(
1+ �m− 1���+ 1�

2m

)
· Ɛ
OPT�I��� �

As mentioned above, this performance guarantee matches the currently best-known performance guarantee
for the traditional stochastic setting, which was derived for the performance of the WSEPT rule in Möehring
et al. [21]. The WSEPT rule, however, requires the knowledge of all jobs with their weights wj and expected
processing times Ɛ
P j� at the outset. In contrast, the MinIncrease policy decides on machine assignments
online, without any knowledge of the jobs to come. Finally, note that these two policies are indeed different;
this follows from simple examples.

Lower bound for fixed assignment policies. The requirement of a fixed assignment of jobs to machines
beforehand may be interpreted as ignoring the additional information that evolves over time in the form of
the actual realization of processing times. In the following, we therefore give a lower bound on the expected
performance Ɛ
FIX�I�� of an optimal stochastic scheduling policy FIX that assigns jobs to machines beforehand.
A fortiori, this lower bound holds for the best-possible SOS policy too.

Theorem 4.2. For stochastic parallel machine scheduling with unit weights and i.i.d. exponential processing
times, P�pj ∼ exp�1��Ɛ
∑Cj�, there exist instances I such that

Ɛ
FIX�I��≥ 3�√2− 1� · Ɛ
OPT�I��− &
for any & > 0. Here, 3�

√
2− 1�≈ 1�24. Hence, no policy that uses fixed assignments of jobs to machines can

perform better in general.

Note that the theorem is formulated for the special case of exponentially distributed processing times. Stronger
bounds can be obtained for arbitrary distributions. However, because our performance guarantees, as in Möhring
et al. [21], depend on the coefficient of variation of the processing times, we are particularly interested in lower
bounds for classes of distributions where this coefficient of variation is small. The coefficient of variation of
exponentially distributed random variables equals 1. For example, for the case of m = 2 machines, we get a
lower bound of 8/7≈ 1�14 on the performance of any fixed assignment policy, and for that case the performance
bound of MinIncrease equals 2− 1/m= 1�5.
Proof of Theorem 4.2. Let us consider an instance with m machines and n = m+ k exponentially dis-

tributed jobs, Pj ∼ exp�1�, where k≥ 1 is an integer. The optimal stochastic scheduling policy is SEPT, shortest
expected processing time first (Bruno et al. [4], Weiss and Pinedo [36]), and the expected performance is (see,
e.g., Uetz [32, Corollary 3.5.17])

Ɛ
OPT�I��= Ɛ
SEPT�I��=∑
j

Ɛ
CSEPT
j �=m+

n∑
j=m+1

j

m
=m+ k+ k�k+ 1�

2m
�

When in a fixed assignment, one machine has to process at least two jobs more than another machine, the
assignment can be improved by moving one job from the most loaded machine to the least loaded machine.
Therefore, the best fixed assignment policy tries to distribute the jobs evenly over the machines. That is, it
assigns 1+ �k/m� jobs to m− k+m�k/m� machines and 1+ �k/m� jobs to k−m�k/m� machines. Hence,
there are m jobs with Ɛ
Cj�= l for each l in the range 1� � � � �1+�k/m�, and k−m�k/m� jobs with Ɛ
Cj�=
2+�k/m�. The expected performance for the best fixed assignment policy FIX is

Ɛ
FIX�I��=∑
j

Ɛ
CFIX
j �=m+ 2k+

(
k− m

2
− m

2

⌊
k

m

⌋)
·
⌊
k

m

⌋
�

For m< k≤ 2m, the value of Ɛ
FIX�I�� is equal to 3k. Hence, for m< k≤ 2m, the ratio Ɛ
FIX�I��/Ɛ
OPT�I�� is
Ɛ
FIX�I��
Ɛ
OPT�I��

= 3k
m+ k+ k�k+ 1�/�2m��

which is maximized for k�m� ∈ ��√2m�� �√2m�
. With this choice of k, the ratio Ɛ
FIX�I��/Ɛ
OPT�I�� tends
to 3

√
2/�2+√

2�= 3�
√
2− 1�≈ 1�24 as m tends to infinity. �

Note that the lower bound of 1.24 holds whenever m, the number of machines, tends to infinity. For smaller
numbers of machines, e.g., m= 2, 3, or 4, we use smaller numbers k= k�m�; namely, k�2�= 1, k�3�= 2, and
k�4�= 2, and obtain the lower bounds 8/7≈ 1�14, 7/6≈ 1�16, and 32/27≈ 1�18.
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Lower bound for MinIncrease. The lower bound on the performance ratio for any fixed assignment policy
given in Theorem 4.2 holds for the MinIncrease policy too. Hence, MinIncrease cannot be better than 1.24-
approximative. For general (i.e., nonexponential) probability distributions, we obtain a lower bound of 3/2 on
the expected performance of MinIncrease relative to the expected performance of an optimal scheduling policy,
as shown by the following instance.
Example 4.1. The instance consists of n− 1 deterministic unit length jobs and one job with a stochastic

two-point distributed processing time. There are m = 2 machines, and we assume that n, the number of jobs
is even. The n− 1 deterministic jobs have unit weight wj = 1; they appear first in the online sequence. The
final job in the online sequence is the stochastic job. It has processing time pj = n2/4 with probability 2/n, and
pj = 1 with probability 1− 2/n. The weight wj of the stochastic job equals the value of its expected processing
time, i.e., 1− 2/n+ n/2.
The MinIncrease policy assigns n/2−1 deterministic jobs to one machine, and n/2 deterministic jobs to the

other. The stochastic job is assigned to the machine with n/2−1 deterministic jobs. Hence, the expected objective
value of the schedule under MinIncrease is Ɛ


∑
wj Cj�= 3n2/4+ o�n2�. An optimal stochastic policy would

start the uncertain job and one deterministic job at time 0. At time t = 1, it is known if the stochastic job has
completed, or if it blocks the machine for another n2/4− 1 time units. If the stochastic job has completed, then
the remaining unit jobs are distributed equally on both machines, otherwise all deterministic jobs are scheduled
on the same machine. Thus, the expected objective value of an optimal schedule is Ɛ
OPT�I��= n2/2+ o�n2�.
The ratio of both values tends to 3/2 if the number of jobs tends to infinity.
Note, however, that this result is less meaningful in comparison to the performance bound of Theorem 4.1,

which depends on an upper bound � on the squared coefficient of variation.

4.2. Scheduling jobs with nontrivial release dates. In this section, we consider the setting where jobs
arrive over time, that is, the stochastic online version of P�rj �Ɛ


∑
wjCj�. The main idea is to adopt the

MinIncrease policy to this setting. However, the difference is that we are no longer equipped with an optimal
policy (as it was WSEPT in the previous section) to schedule the jobs that are assigned to a single machine.
In addition, even if we knew such a policy for a single machine, it would not be straightforward how to use it
in the setting with parallel machines to define a feasible online scheduling policy. However, we propose to use
the �-Shift-WSEPT rule as introduced in §3 to sequence the jobs that we have assigned to the same machine.
The assignment of jobs to machines, on the other hand, remains the same as before in the case without release
dates. In a sense, when assigning jobs to machines, we thus ignore the possible gain of information that occurs
over time in the online time model.
Algorithm 3 (Modified MinIncrease). When a job j is presented to the scheduler at its release date rj ,

it is assigned to the machine i that minimizes the expression

z�j� i� =wj
∑

k∈H�j�� k<j�k→i

Ɛ
P k�+ Ɛ
P j�
∑

k∈L�j�� k<j�k→i

wk+wjƐ
P j��

On each machine, the jobs assigned to this machine are sequenced according to the �-Shift-WSEPT rule.
The crucial observation is that the �-Shift-WSEPT policy on machine ij learns about job j’s existence

immediately at time rj . Hence, for each single machine, it is indeed feasible to use the �-Shift-WSEPT rule,
and the so-defined policy is a feasible SOS policy.

Theorem 4.3. Consider the stochastic online scheduling (SOS) problem on parallel machines with release
dates, P�rj �Ɛ


∑
wjCj�. Given that all processing times are �-NBUE, the modified MinIncrease policy running

�-Shift-WSEPT on each single machine is a �-approximation, where

�= 1+max
{
1+ �

�
��+ �+ �m− 1���+ 1�

2m

}
�

Here, � is such that Var
P j�/Ɛ
P j�
2 ≤ � for all jobs j . In particular, because all processing times Pj are

�-NBUE, Lemma A.1 yields that �≤ 2�− 1, hence �≤ 1+max�1+ �/���+ ��2m− 1�/m
.
Proof. Let ij be the machine to which job j is assigned. Then, by Lemma 3.1, we know that

Ɛ
Cj�≤
(
1+ �

�

)
r ′j +

∑
k∈H�j�� k→ij

Ɛ
P k�� (2)

and the expected value of MinIncrease can be bounded by

Ɛ
MI�I��≤
(
1+ �

�

)∑
j

wjr
′
j +

∑
j

wj
∑

k∈H�j�� k→ij

Ɛ
P k�� (3)
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For the second part of the right-hand side of (3), we can use the same index rearrangement as in the proof of
Lemma 4.1 (see (1)). We thus obtain

∑
j

wj
∑

k∈H�j�� k→ij

Ɛ
P k� =
∑
j

(
wj

∑
k∈H�j�� k→ij � k<j

Ɛ
P k�+ Ɛ
P j�
∑

k∈L�j�� k→ij � k<j

wk+wjƐ
P j �
)
�

By definition of the modified MinIncrease algorithm, we know that any job j is assigned to the machine,
which minimizes the term in parentheses. Hence, by the same averaging argument as before, we know that

∑
j

wj
∑

k∈H�j�� k→ij

Ɛ
P k� ≤
∑
j

(
wj

∑
k∈H�j�� k<j

Ɛ
P k�

m
+ Ɛ
P j �

∑
k∈L�j�� k<j

wk
m

+wjƐ
P j�
)

= ∑
j

wj
∑
k∈H�j�

Ɛ
P k�

m
+ m− 1

m

∑
j

wjƐ
P j��

where the last equality again follows from index rearrangement. Plugging this into (3) leads to the following
bound on the expected performance of MinIncrease:

Ɛ
MI�I��≤
(
1+ �

�

)∑
j

wjr
′
j +

∑
j

wj
∑
k∈H�j�

Ɛ
P k�

m
+ m− 1

m

∑
j

wjƐ
P j��

Applying the bound of Lemma 2.1 into the above inequality, we obtain

Ɛ
MI�I�� ≤
(
1+ �

�

)∑
j

wjr
′
j + Ɛ
OPT�I��+ �m− 1���+ 1�

2m

∑
j

wjƐ
P j�

= Ɛ
OPT�I��+∑
j

wj

((
1+ �

�

)
r ′j +

�m− 1���+ 1�
2m

Ɛ
P j�

)
� (4)

where again � is an upper bound on the squared coefficient of variation of the processing time distributions Pj .
By bounding r ′j by rj +�Ɛ
P j�, we obtain the following bound on the term in parentheses of the right-hand side
of (4): (

1+ �

�

)
r ′j +

�m− 1���+ 1�
2m

Ɛ
P j� ≤
(
1+ �

�

)
rj +

(
�+ �+ �m− 1���+ 1�

2m

)
Ɛ
P j�

≤ �rj + Ɛ
P j��max
{
1+ �

�
��+ �+ �m− 1���+ 1�

2m

}
�

By using this inequality in Equation (4), and applying the trivial lower bound
∑
j wj�rj + Ɛ
P j��≤ Ɛ
OPT�I��

on the expected optimum performance, we get the claimed performance bound of

�= 1+max
{
1+ �

�
��+ �+ �m− 1���+ 1�

2m

}
�

Because all processing times are �-NBUE, we know by Lemma A.1 in the appendix that �≤ 2�− 1, and thus
the second claim of the theorem follows; namely, �≤ 1+max�1+ �/���+ ��2m− 1�/m
. �

For NBUE processing times, where �= �= 1, Theorem 4.3 yields a performance bound of

�= 2+max
{
1
�
��+ m− 1

m

}
�

This term is minimal for � = �
√
5m2− 2m+ 1−m+ 1�/�2m�, which yields a ratio of � = 2 +

�
√
5m2− 2m+ 1+m− 1�/�2m�. This is less than �5+√

5�/2− 1/�2m�≈ 3�62− 1/�2m�, improving upon the
previously best-known bound of 4− 1/m from Möhring et al. [21] for the traditional stochastic problem. More
generally, for �-NBUE processing times, optimizing the term max�1+ �/���+ ��2m− 1�/m
 for � yields
�< 3/2+ ��2m− 1�/2m+√

4�2+ 1/2.
Moreover, for deterministic processing times, where � = 0 and � = 1, Theorem 4.3 yields a performance

bound of

�= 2+max
{
1
�
��+ m− 1

2m

}
�

Optimizing for � yields � = �
√
17m2− 2m+ 1−m+ 1�/�4m�, which yields a ratio of � = 2 +

�
√
17m2− 2m+ 1+m− 1�/�4m�. This is less than 3.281 for any value of m, leaving only a small gap to the

currently best-known bound of 2.62 for deterministic online scheduling (Correa and Wagner [8]). In fact, it
matches the competitive ratio of the deterministic parallel machine version of �-Shift-WSEPT from Megow
and Schulz [18].
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4.3. Randomized job assignment. As a matter of fact, the MinIncrease policy can be interpreted as the
derandomized version of a policy that assigns jobs uniformly at random to the machines. Even though randomly
assigning jobs to machines ignores much information, it is nevertheless known to be quite powerful as has been
observed already by, e.g., Schulz and Skutella [26]. They apply a random assignment strategy, based on the
solution of an LP-relaxation, for scheduling jobs with deterministic processing times on unrelated machines. For
the special case of identical machines, their approach corresponds to assigning jobs uniformly at random to the
machines. The random assignment strategy for the SOS problem at hand is as follows.
Algorithm 4 (RandAssign). When a job is presented to the scheduler, it is assigned to machine i with

probability 1/m for all i= 1� � � � �m. The jobs assigned to machine i are scheduled according to the �-Shift-
WSEPT policy.

Theorem 4.4. Consider the stochastic online scheduling (SOS) problem on parallel machines with release
dates, P�rj �Ɛ


∑
wjCj�. Given that all processing times are �-NBUE, the RandAssign policy running �-Shift-

WSEPT on each single machine is a �-approximation, where

�= 1+max
{
1+ �

�
��+ �+ �m− 1���+ 1�

2m

}
�

Here, � is such that Var
P j�/Ɛ
P j�
2 ≤ � for all jobs j . In particular, because all processing times Pj are

�-NBUE, Lemma A.1 yields that �≤ 2�− 1, hence, �≤ 1+max�1+ �/���+ ��2m− 1�/m
.
Proof. Consider a job j and let i denote the machine to which it has been assigned. Let Pr 
j→ i� be the

probability for job j being assigned to machine i. Then, by Lemma 3.1, we know that

Ɛ
Cj � j→ i� ≤
(
1+ �

�

)
r ′j +

∑
k∈H�j�

Pr 
k→ i � j→ i� · Ɛ
P k � j→ i�

=
(
1+ �

�

)
r ′j +

∑
k∈H�j�

Pr 
k→ i � j→ i� · Ɛ
P k��

The probability that a job is assigned to a certain machine is equal for all machines, i.e., Pr 
j→ i�= 1/m for
all i= 1� � � � �m, and for any job j . Unconditioning the expected value of job j’s completion time yields

Ɛ
Cj� =
m∑
i=1
Pr 
j→ i� · Ɛ
Cj � j→ i�

≤
(
1+ �

�

)
r ′j +

m∑
i=1
Pr 
j→ i� · ∑

k∈H�j�
Pr 
k→ i � j→ i� · Ɛ
P k�

=
(
1+ �

�

)
r ′j +

∑
k∈H�j�

Ɛ
P k�

m
+ m− 1

m
Ɛ
P j ��

where the last equality is because of the independence of the job assignments to the machines. Then, the expected
objective value of RandAssign, Ɛ
RA�I��, can be bounded by

Ɛ
RA�I�� = ∑
j

wjƐ
Cj�

≤
(
1+ �

�

)∑
j

wjr
′
j +

∑
j

wj
∑
k∈H�j�

Ɛ
P k�

m
+ m− 1

m

∑
j

wjƐ
P j��

This bound equals the upper bound that we achieved on the expected performance of the (modified)
MinIncrease policy in the proof of Theorem 4.3. Hence, we conclude the proof in the same way and with the
same result as for MinIncrease. �

Appendix. Coefficient of variation for �-NBUE random variables. In this section, we show the relation
between the value of � and the (squared) coefficient of variation Var
X�/Ɛ
X�2 for a �-NBUE random variable X.

Lemma A.1. Let X be a �-NBUE random variable, and let CV
X�=√
Var
X�/Ɛ
X� denote the coefficient

of variation of X. Then, CV
X�2 ≤ 2�− 1.
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Proof. We prove the lemma for continuous random variables X; the proof for discrete random variables
goes along the same lines. Let X be a nonnegative �-NBUE random variable, with cumulative distribution
function F and density f .
By definition of conditional expectation, we know that

Ɛ
X− t �X > t�=
∫ �
t
�x− t�f �x�dx
1− F �t� � (5)

As x− t = ∫ x−t
0 dy, we can write the nominator of the right-hand side as∫ �

x=t
�x− t�f �x�dx =

∫ �

x=t

∫ x−t

y=0
f �x�dy dx

=
∫ �

y=0

∫ �

x=y+t
f �x�dx dy

=
∫ �

x=t
1− F �x�dx� (6)

where the second equality is obtained by changing the order of integration.
As X is �-NBUE, i.e., Ɛ
X− t �X > t�≤ �Ɛ
X�, it follows from (5) and (6) that∫ �

x=t
1− F �x�dx= Ɛ
X− t �X > t��1− F �t��≤ �Ɛ
X��1− F �t��� (7)

By integrating the right-hand side of the above inequality over t, we obtain

�Ɛ
X�
∫ �

t=0
1− F �t�dt = �Ɛ
X�2� (8)

Hall and Wellner [13, Equality (4.1)] showed that integrating the left-hand side of (7) over t yields∫ �

t=0

∫ �

x=t
1− F �x�dx dt = 1

2
Ɛ
X2�� (9)

Hence, using (8) and (9) in (7), we have
Ɛ
X2�≤ 2�Ɛ
X�2�

Rearranging terms yields the desired bound on the squared coefficient of variation

CV
X�2 = Ɛ
X2�− Ɛ
X�2

Ɛ
X�2
≤ 2�− 1� �
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