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JOSÉ CORREA, Universidad de Chile

PATRICIO FONCEA, Universidad de Chile

RUBEN HOEKSMA, Universidad de Chile

TIM OOSTERWIJK, Maastricht University

TJARK VREDEVELD, Maastricht University

Posted price mechanisms constitute a widely used way of selling items to strategic consumers. Although subop-

timal, the a�ractiveness of these mechanisms comes from their simplicity and easy implementation. In this pa-

per, we investigate the performance of posted price mechanisms when customers arrive in an unknown random

order. We compare the expected revenue of these mechanisms to the expected revenue of the optimal auction in

two di�erent se�ings. Namely, the nonadaptive se�ing in which all o�ers are sent to the customers beforehand,

and the adaptive se�ing in which an o�er is made when a consumer arrives. For the nonadaptive case, we ob-

tain a strategy achieving an expected revenue within at least a 1−1/e fraction of that of the optimal auction. We

also show that this bound is tight, even if the customers have i.i.d. valuations for the item. For the adaptive case,

we exhibit a posted price mechanism that achieves a factor 0.745 of the optimal revenue, when the customers

have i.i.d. valuations for the item. Furthermore, we prove that our results extend to the prophet inequality

se�ing and in particular our result for i.i.d. random valuations resolves a problem posed by Hill and Kertz [13].
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1 INTRODUCTION
Posted price mechanisms constitute an a�ractive and widely applicable way of selling items to strate-

gic consumers. In this context, consumers are faced with take-it-or-leave-it o�ers, and therefore

strategic behaviour simply vanishes. �is type of mechanism has been vastly studied, particularly in

the marketing community [5]. In recent years, there has been a signi�cant e�ort to understand the

expected revenue of the outcome generated by di�erent posted price mechanisms when compared

to that of the optimal auction [2, 4, 6, 23]. In addition, several companies have started to apply per-
sonalized pricing to sell their products. Under this policy, companies set di�erent prices for di�erent

consumers based on purchase history or other factors that may a�ect their willingness to pay. For

example, the online data provider Lexis-Nexis sells to virtually every user at a di�erent price [22]. In

2012, Orbitz online travel agency found that people who use Mac computers spent as much as 30%

more on hotels, so it started to show them di�erent, and sometimes costlier, travel options than those

shown to Windows visitors [18]. Similarly, retailers and supermarket chains such as Safeway are

using data culled from billions of purchases to o�er deals tailored to speci�c shoppers [15]. Choud-

hary et al. [7] further investigated this issue, providing more examples and developing a theoretical

framework to analyze equilibria between �rms that apply personalized pricing and those who do not.

In its simplest form, the problem we consider is described as follows. A monopolist sells a single

item to a set of known potential buyers. �e seller places no value on the item, while the buyers

have independent, not necessarily identical, random valuations for the item. �e main question
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is to design a mechanism maximizing the revenue of the seller. �is question was answered in

a seminal paper by Myerson [19], and the solution is, in some situations, a remarkably simple

mechanism. However, in many situations it is hard to implement, and the mechanism of choice

turns out to be a simple posted price mechanism. A common example of this practice is that of

direct mail campaigns, in which the seller contacts its potential buyers directly and o�ers each one

a certain price for the item. �e item is then sold to the �rst consumer who accepts the o�er [5, 8].

In this paper, we investigate the performance of posted price mechanisms to sell a single item to

a given set of customers who arrive in a random unknown order. We consider two di�erent models

which share the property that each customer is o�ered the item at most once. Upon receiving

an o�er, a customer immediately decides whether to buy the item at that price or to pass and

simply not buy. �e nonadaptive model considers the situation in which all o�ers have to be made

simultaneously, and customers respond in random order, akin to direct mail campaigns. �e adaptive
model considers a situation in which the seller may adapt the o�er. Here, customers again arrive in

random order. Whenever a customer arrives, she is o�ered the item at a price, which the seller may

base on the customer he is o�ering to, as well as the customers who already rejected earlier o�ers.

Problem description. A seller has a single item to sell to a given set of customers I. We assume

that the seller has no value for keeping the item. Customers have independent random valuations

for the item with customer i ∈ I valuing the item at vi , drawn from distribution Fi (·). �e cus-

tomers arrive in (uniform) random order, and the goal of the seller is to maximize his expected

revenue. To this end, we consider a nonadaptive and an adaptive scenario.

Nonadaptive: �e seller sets prices pi ≥ 0 for all i ∈ I, with the goal of maximizing his expected

revenue, de�ned as ∑
i ∈I

piPσ ,v

[
i = argmin

j ∈I
{σ (j) |vj ≥ pj }

]
,

where the probability is taken over the arrival permutation σ and the customers’ valuations v .

Adaptive: �e seller o�ers each customer a price as she arrives. So, the seller sets functionspi : 2
I →

R for each customer i , such that, if S is the set of customers who already arrived and declined the o�er,

pi (S) is the price o�ered to customer i if she is next to arrive. For an arrival permutation σ , we denote

pi (σ ) = pi ({σ−1(1), . . . ,σ−1(σ (i) − 1)}), and therefore we can write the seller’s expected revenue as

Eσ

[∑
i ∈I

pi (σ )Pv

[
i = argmin

j ∈I
{σ (j) |vj ≥ pj (σ )

] ]
,

where the expectation is taken over the arrival permutation σ , and the probability is taken over

the customers’ valuations v .

Our results. We present two posted price mechanisms: A nonadaptive posted price mechanism

that guarantees an expected revenue within a factor 1 − 1/e of that of Myerson’s optimal auction

and an adaptive posted price mechanism for i.i.d. value distributions that has a guaranteed expected

revenue of 0.745 of that of Myerson’s optimal auction.
1

�e factor achieved by our nonadaptive mechanism complements recent work of Alaei et al. [3] by

showing that personalized pricing can increase the revenue from 1/e to 1 − 1/e . On the other hand,

the bound matches the well known result of Chawla et al. [6], who designed a sequential posted price

mechanism with the same approximation guarantee. Although their mechanism is also nonadaptive

1
One may think here that the right benchmark should be the expectation of the maximum valuation. However, this cannot

yield useful results. Consider a single customer whose valuation lies in [1, +∞) distributed according to F (v) = 1 − 1/v .

Clearly, if we charge price p the acceptance probability is 1/p , for a total revenue of 1. On the other hand, the expectation

of the valuation is actually +∞. �is example can easily be turned into one with �nite expectation but arbitrarily large

ratio between the optimal pricing and the expectation of the random variable.
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in the sense that the selected prices are �xed a priori, it has the power to choose the arrival order

of the customers. �us, making it easier to extract revenue by o�ering to good customers �rst.

Furthermore, this bound also matches the approximation guarantee obtained by Esfandiari et al. [10],

who also consider the random arrival model, but in their mechanism the sequence of prices depends

on the arrival order of customers, and it is therefore adaptive (according to the de�nition in this

paper). Besides the natural application of our nonadaptive se�ing, it is interesting to note that one

can achieve this approximation factor in the random arrival model without using adaptivity. Also,

as opposed to previous results, we prove that the bound of 1 − 1/e is best possible for our se�ing.

Theorem 1.1. For any given set of potential customers I, there exists a nonadaptive posted price
mechanism that achieves an expected revenue of at least a 1− 1/e fraction of that of Myerson’s optimal
auction on I.

In the case of monotone virtual valuations
2
, the algorithm that achieves this result becomes

remarkably simple.

Input: Customers i ∈ I with valuation distributed according to Fi .
Algorithm 1:

(1) Compute qi = probability that optimal auction assigns to i .
(2) Discard customer i with probability 1 − 2

2+(e−2)qi .

(3) O�er non-discarded customers price F−1

i (1 − qi ).
(4) Item is allocated to a random customer accepting the o�er.

�e algorithm, while randomized, can be derandomized using standard techniques.

Algorithm 1 may seem counterintuitive since, in step (2), the higher the probability is that a

customer wins the optimal auction, the higher the probability is that the algorithm discards her

(though the probability of discarding any customer is at most 1 − 2

e ). �e following example gives

some intuition on why agents need to be discarded. Consider just two customers: customer 1 who

has deterministic value equal to 1, and customer 2 who values the item at 100 with probability

1/10 and at 0 with probability 9/10. In this situation, the optimal mechanism assigns the item to

customer 2 with probability 9/10 and the total expected revenue is 10+9/10. Now, if a nonadap-

tive algorithm makes o�ers to both customers the expected revenue is (1/10)(50.5)+(9/10)(1)=5.95,

which is not within the claimed ratio of the optimal mechanism. Another somewhat surprising

element of Algorithm 1 is that the probability of not assigning the item can be computed as∏
i ∈I (1 − 2qi/(2 + (e − 2)qi ))) ≥ 2/e . Again, the previous example provides intuition to the fact

that, if we shoot for an algorithm that assigns too frequently, we risk assigning the item for too

low a price. �is intuition does not hold in the adaptive case.

�e cornerstone of our analysis is a basic result about Bernoulli random variables which may be

of independent interest. �e result states that if we are given a set of nonhomogeneous independent

Bernoulli random variables with associated prizes, then there is a subset of variables so that the

expected average prize of the successes is at least a factor 1−1/e of the expectation of the maximum

prize over all random variables.

Lemma 1.2 (Bernoulli Selection Lemma). Given a set N = {1, . . . ,n} of independent Bernoulli
random variables X1, . . . ,Xn , where Xi = 1 with probability qi and 0 otherwise, and associated prizes
b1, . . . ,bn . �e following inequalities hold:

e

e − 1

max

S ⊆N
E

[∑
i ∈S biXi∑
i ∈S Xi

]
≥ max

zi ≤qi

{∑
i ∈N

bizi

��� ∑ zi ≤ 1

}
≥ E[max

i ∈N
{biXi }] .

2
Recall that for a valuation distribution F , the virtual valuation is de�ned as v − 1−F (v )

f (v ) .
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Here, when evaluating the le�most term, we de�ne 0/0 = 0.

To prove the lemma, we consider a continuous relaxation of the maximization problem, and then

guess a solution in which each random variable is included in S with some instance-dependent

probability. �en, we look for the worst possible instance by applying the �rst order optimality

conditions of a nonlinear problem. �ese conditions reveal some structural insight on what a

worst case instance looks like. Using this, we obtain the desired bound. �eorem 1.1 follows from

Lemma 1.2 with fairly li�le extra work. �e basic tool for this is a fundamental lemma by Chawla

et al. [6, Lemma 4] that upper bounds the revenue of the optimal auction.

To complement our results, we provide instances that show that the bounds in Lemma 1.2 and

�eorem 1.1 are tight. In particular, we show that even with independent identically distributed
(i.i.d.) customer valuations the bound of �eorem 1.1 cannot be beaten. �erefore, adaptivity is

necessary to go beyond 1− 1/e , even with i.i.d. distributions. For this se�ing we show the following.

Theorem 1.3. For any given set of potential customers I whose values are independent and iden-
tically distributed, there exists an adaptive posted price mechanism that achieves an expected revenue
of at least a 1/β > 0.745 fraction of that of Myerson’s optimal auction on I, where β is the unique
value such that ∫

1

0

1

y(1 − ln(y)) + (β − 1)dy = 1 .

To achieve this result we use a quite natural idea: as less customers are le�, the price should

decrease. Besides this the key ingredient of our algorithm is to use random prices drawn from a

well chosen distribution that mimics an expression we obtain for the revenue of an optimal auction.

Again in the case of monotone virtual valuations our algorithms is as follows:

Input: Customers i ∈ I with valuation i.i.d. according to F .

Algorithm 2:

(1) Partition the interval [0, 1] into intervals Ai = [ai−1,ai ], s.t. a0 = 0, an = 1.

(2) Sample qi from Ai with an appropriately chosen distribution.

(3) When the i−th buyer comes, o�er price pi = max{F−1(1 − qi ),v∗}, where v∗ is the reser-

vation price of the optimal auction.

Like Algorithm 1, also Algorithm 2 can be derandomized using standard techniques.

We believe that the bound of �eorem 1.3 is tight. Although the best upper bound known for the

i.i.d. case, due to Blumrosen and Holenstein [4], proves that no algorithm can achieve a fraction of

at least 0.79, we believe that the family of instances provided by Hill and Kertz [13] in the context

of prophet inequalities for i.i.d. random variables can be transformed into a tight family of instances

for �eorem 1.3. We remark here that recent work of Dü�ing et al. [9] also studies the bene�t of

adaptivity in the i.i.d. case, but from a di�erent perspective.

Due to space constraints many technical proofs have been omi�ed in this paper.

Prophet Inequalities. As it is common in the literature, we prove that our �eorems 1.1 and 1.3

also hold in the context of the vastly studied prophet inequalities [13, 14, 16, 17, 20, 21], whose

study started in the sixties with the work of Gilbert and Mosteller [11].

In particular �eorem 1.1 becomes Corollary 2.2 and is related to recent work of Esfandiari et al.

[10]. In this se�ing, known as prophet secretary or full information secretary problem, we are given n
independent nonnegative random variables X1, . . . ,Xn that arrive in random order. Upon arrival of

a random variable we see its value and may decide to keep it and �nish or to drop it and continue.

�e goal is to design an algorithm that obtains a value within a large fraction of the expectation

of the maximum of all Xi ’s. In Corollary 2.2 we use Lemma 1.2 to prove that, even nonadaptively,

we may obtain a 1 − 1/e fraction, with an algorithm that sets a threshold for each random variable
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(independent of the arrival order) in advance and accepts the �rst random variable with value above

the threshold. Moreover, this bound is also tight, which follows from the example in Section 2. In

the case in which the probability of having two Xi ’s being the maximum is zero the algorithm is

again quite simple:

(1) Compute qi = probability that Xi is the maximum.

(2) Discard Xi with probability 1 − 2

2+(e−2)qi .

(3) Set threshold τi = F−1

i (1 − qi ).
(4) Keep �rst random variable whose realization is at least τi .

In the general situation we apply an arbitrary tie-breaking rule so that

∑
qi = 1.

Similarly in Corollary 4.7 (which follows from �eorem 1.3) we prove that a variant of Algo-

rithm 2 gives a sequence of thresholds τ1, . . . ,τn such that, if we take the �rst of n i.i.d. random

variables whose value is above the threshold, we obtain a value of at least a 0.745 fraction of the

expectation of the maximum of the random variables. �is result can be seen as a follow up on

a result by Hill and Kertz [13] on the prophet inequality for i.i.d. random variables. �ey study the

performance of the best stopping time when compared to a prophet that can extract the expectation

of the maximum. �e main result of Hill and Kertz is a recursive characterization of an , the best

possible factor when faced with n random variables. More precisely, they prove that if X1, . . . ,Xn
are i.i.d. nonnegative random variables andTn denotes the set of stopping rules for X1, . . . ,Xn then

E(max{X1, . . . ,Xn}) ≤ an sup{E(Xt ) : t ∈ Tn} .

Furthermore, Hill and Kertz �nd instances in which it is not possible to beat the factor an . �ey

also prove that an ≤ e/(e − 1), conjecture that the sequence is monotone, and leave open the

existence and computation of its limit. �e monotonicity together with the limit calculation would

readily give a universal bound (valid for all n) on the performance of the best stopping rule. Shortly

a�er, Samuel-Cahn [21] reports that Kertz proves existence of the limit a of the an sequence and

conjectures that it equals 1.342 (obtained as the solution to

∫
1

0
(y −y ln(y))+a− 1)−1dy = 1). Finally,

Kertz [14, Lemma 6.2] proves the la�er conjecture (for which Saint-Mont [20] derives a simpler

proof). However he is unable to prove that the sequence is monotone and therefore the best upper

bound on the whole an sequence still stood at e/(e − 1) ≈ 1.582 [14, Lemma 3.4]. Very recently, and

independently of our work, Abolhassani et al. [1] improved this upper bound to 1/0.738 ≈ 1.355.

Our Corollary 4.7 closes this gap and implies that for all n, an ≤ a ≈ 1.342, and by the tight

examples of Hill and Kertz [13] it turns out that this constant is best possible.

2 THE BERNOULLI SELECTION LEMMA
In this section we prove Lemma 1.2. Actually, we prove a slightly stronger version that will become

clear at the end of the proof. We also provide a tight instance and discuss some generalizations.

�e proof. �e second inequality of Lemma 1.2 is trivial, as the expectation of the maximum is

a sum over all values bi weighed by the probability with which that value is the maximum. Since

these probabilities sum to at most one, the inequality follows.

�e proof for the �rst inequality has two main ingredients. First, we reformulate the le� hand

side in an appropriate way, and lower bound it by another function using KKT-conditions. �en,

we show that this function is bounded from below by 1 − 1/e .

As a warm up, we �rst show how to get a weaker result, that only gives us a factor of

√
e instead

of
e

e−1
, with more straightforward arguments.
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Proof. We start the proof by rewriting the optimization problem:

max

S ⊆N

{
E

[∑
i ∈S biXi∑
i ∈S Xi

]}
. (P)

Instead of choosing a subset of N , we set for each i ∈ N a value χi ∈ [0, 1], which represents the

probability with which we actually choose i . Now, let πi = χiqi denote the probability of i being

picked and having Xi = 1. So we can consider the following maximization problem, with decision

variables π , as a relaxation of (P):

max

0≤πi ≤qi

∑
S ⊆N

(
b(S)
|S |

(∏
i ∈S

πi

) (∏
i<S

(1 − πi )
))
,

where b(S) = ∑
i ∈S bi . Note that the previous objective is linear in each variable so that there is

an extreme optimal solution [8]. �us, the previous problem is in fact equivalent to (P). Now, by

changing the order of the summations, we obtain

max

0≤πi ≤qi

∑
i ∈N

biπi
∑

S ⊆N \{i }

1

1 + |S |
∏
j ∈S

πj
∏

j ∈N \(S∪{i })
(1 − πj ) . (1)

With (P) in this equivalent form, we now proceed to guess a feasible solution. To this end,

consider an optimal solution z∗ to

max

{∑
i ∈N

bizi

��� ∑
i ∈N

zi ≤ 1, zi ≤ qi for all i ∈ N
}
,

and set πi = 2z∗i /(2 + z∗i ). Note that πi ≤ qi , so that, substituting this in the objective of (1), we get∑
i ∈N

biz
∗
i

∏
j ∈N

1

1 +
z∗j
2

∑
S ⊆N \{i }

2
|S |

1 + |S |
∏
j ∈S

z∗j
2

∏
j ∈N \(S∪{i })

(
1 −

z∗j
2

)
. (2)

It is easy to see that ∑
S ⊆N \{i }

2
|S |

1 + |S |
∏
j ∈S

z∗j
2

∏
j ∈N \(S∪{i })

(
1 −

z∗j
2

)
≥ 1 ,

since the le� hand side corresponds to E[f (S)] over all S ⊆ N \ {i} under probabilities z∗j /2 for

every element i and f (S) = 2
|S |/(|S | + 1) ≥ 1. While for any values zi such that

∑
i zi ≤ 1, we have

n∏
j=1

1

1 +
zj
2

≥ e−
∑n
j=1

zj
2 ≥ 1

√
e
,

where the �rst inequality follows from 1 + x ≤ ex , concluding the proof. �

To obtain the improved factor 1 − 1/e we do the same as in the last proof, but make a subtle

modi�cation in the choice of πi . We choose πi =
2z∗i

2+(e−2)z∗i
,
34

such that 1 − πi =
2−(4−e)z∗i
2+(e−2)z∗i

. Note that

3
Because of the choice of πi , we actually prove the slightly stronger bound where we maximize over zi ≤ 2qi

2−(e−2)qi .

4
�e choice of πi suggests that the random variables are not picked deterministically, but with probability less than 1,

since πi < z∗i if z∗i > 0. However, as noted in the beginning of the proof, because of linearity of the objective in each

variable, there is always an extreme optimal solution where the random variables are picked deterministically.
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this is a feasible choice of πi for all i ∈ N , since for this choice πi ≤ z∗i ≤ qi . We plug this back

into (1), and obtain that (P) is lower bounded by∑
i ∈N

2biz
∗
i

(∏
j ∈N

1

2 + (e − 2)z∗j

) ∑
S ⊆N \{i }

2
|S |

1 + |S |
∏
j ∈S

z∗j
∏

j ∈N \(S∪{i })
(2 − (4 − e)z∗j ) . (3)

We proceed to lower bound this quantity, where we use the following technical result.

Proposition 2.1. Consider the problem minx ∈RM+ { fM (x) :

∑
i ∈M xi ≤ a}, where a ≤ 1 and

fM (x) =
(∏
j ∈M

1

2 + (e − 2)x j

) ∑
S ⊆M

2
|S |

1 + |S |
∏
j ∈S

x j
∏

j ∈M\S
(2 − (4 − e)x j ) .

An optimal solution satis�es that all nonzero variables have to be equal and
∑

i ∈M xi = a.

Using Proposition 2.1, we lower bound (3) as follows. Consider the term

©«
∏

j ∈N \{i }

1

2 + (e − 2)z∗j
ª®¬

∑
S ⊆N \{i }

2
|S |

1 + |S |
∏
j ∈S

z∗j
∏

j ∈N \(S∪{i })
(2 − (4 − e)z∗j ) .

Note that this is equal to fN \{i }(z∗−i ).5 So, Proposition 2.1 can be applied with a = 1 − z∗i . �us,

fN \{i }(z∗−i ) ≥ fN \{i }(x∗) ,
with x∗ the optimal solution to minx ∈RN \{i }+

{ fN \{i }(x) :

∑
j ∈N \{i } x j ≤ a}.

Proposition 2.1 states that x∗j = (1− z∗i )/k , where k ≤ n − 1 is the number of nonzero variables in

x∗. Conditioning on the cardinality of the set S , and using the Binomial �eorem, a straightforward

but tedious calculation shows that

fN \{i }(x∗) =
2k + (e − 2)(1 − z∗i )

2(k + 1)(1 − z∗i )

(
1 −

(
1 −

2(1 − z∗i )
2k + (e − 2)(1 − z∗i )

)k+1

)
.

As this quantity only depends on k and z∗i , we may de�ne

φk (z∗i ) =
2

(2 + (e − 2)z∗i )
fN \{i }(x∗) ,

to conclude that expression (3) (and in turn (P)) is lower bounded by∑
i ∈N

biz
∗
iφk (i)(z∗i ) .

where the index k(i), denoting the number of nonzero variables in x∗, is always at least 1, yet may

vary, depending on i .
�e remainder of the proof establishes that φk (i)(z∗i ) ≥ 1 − 1

e . Indeed, we show that, for all

y ∈ [0, 1] and for all n ≥ 1, we have that φn(y) ≥ 1 − 1

e . �

Tightness. We now provide a family of instances that show that the 1−1/e bound in the Bernoulli

Selection Lemma is actually best possible. Consider n2
independent identically distributed Bernoulli

random variables with parameter 1/n and prizes b1 = n/(e − 2) and bi = 1 for 2 ≤ i ≤ n2
. �e

expectation of the maximum prize is given by

E

[
max

i ∈N
{biXi }

]
=

1

e − 2

+

(
1 − 1

n

) (
1 −

(
1 − 1

n

)n2−1

)
−→ 1

e − 2

+ 1 .

5x−i denotes the vector x with coordinate i eliminated.
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In this particular se�ing, where the Bernoulli random variables are i.i.d., the best strategy is to sort

by prize and take some subset with those of higher prize. �is means to choose the �rst random

variable and a subset of size k − 1 of the rest for some 1 ≤ k ≤ n2
. �is yields an expected average

value that can be upper bounded by(
1 −

(
1 − 1

n

)k ) n
e−2
+ k − 1

k
≤

(
1 −

(
1 − 1

n

)k ) (
n

k(e − 2) + 1

)
.

�e above can be shown to converge, as n →∞, to

max

0≤x ≤n
(1 − e−x )

(
1

x(e − 2) + 1

)
,

where x = k
n . Moreover, this expression is maximized at x = 1. �is yields the value (1 −

e−1)
(

1

e−2
+ 1

)
= (1 − 1/e)E[maxi ∈N {biXi }].

Extension. �e Bernoulli Selection Lemma can be used to prove a similar result for more general

random variables. Suppose you can now choose one of n prizes whose values are random variables

distributed according to n possibly di�erent distributions. �e prizes arrive in random order, and,

upon arrival, we must decide whether we keep that prize, or we simply discard it and wait for the

next. �e goal is to maximize the expected value of the selected prize. Similar to the nonadaptive

se�ing considered so far, we look for an acceptance criterion that is set beforehand, and only based

on the distributions. �is problem resembles the prophet inequality and also the prophet secretary

problem [10].

Corollary 2.2. Given n independent nonnegative random variables X1, . . . ,Xn with Xi ∼ Fi .
�ere exist values τ1, . . . ,τn such that

E

[∑n
i=1

XiYi∑n
i=1

Yi

]
≥

(
1 − 1

e

)
E

[
max

i=1, ...,n
Xi

]
,

where Yi is a Bernoulli random variable that has value 1 if Xi > τi .

In the context of the prophet inequality, note that the quantity on the le� exactly corresponds

to the expected value of the �rst Xi above τi , when the Xi ’s are ordered uniformly at random.

Proof. Assume �rst that the Fi are continuous for all i . Let qi = P(Xi ≥ X j , ∀j = 1, . . . ,n)
be the probability that Xi is the largest and αi be a value for which 1 − Fi (αi ) = qi . Consider

bi = E[Xi | Xi > αi ] and the Bernoulli random variables Z1, . . . ,Zn where Zi has parameter qi .
We apply the Bernoulli Selection Lemma to this instance, and thus let S ⊆ {1, . . . ,n} be a set for

which the lemma holds. Now de�ne τi = αi for i ∈ S and τi = ∞ otherwise, and note that for i < S ,

we have Yi = 0 almost surely, and for i ∈ S , we have P(Xi > αi ) = P(Yi = 1) = qi . It follows that

E
[∑n

i=1
XiYi∑n

i=1
Yi

]
=

∑
i ∈S E

[
XiYi∑
j∈S Yj

]
=

∑
i ∈S E[Xi | Yi = 1]E

[
(1 +∑

j ∈S\{i } Yj )−1

��Yi = 1

]
P(Yi = 1)

=
∑

i ∈S E[Xi | Xi > αi ]E
[

Yi∑
j∈S Yj

]
= E

[∑
i∈S E[Xi |Xi>αi ]Zi∑

i∈S Zi

]
≥ e−1

e maxzi ≤qi

{∑n
i=1
E[Xi | Xi > αi ]zi

��� ∑n
i=1

zi ≤ 1

}
≥ e−1

e
∑n

i=1
E[Xi | Xi > αi ]qi ,
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where the second to last inequality follows from the Bernoulli Selection Lemma, while the last

holds since

∑n
i=1

qi = 1. Now note that E
[
maxi=1, ...,n Xi

]
=

∑n
i=1
E[Xi | Xi ≥ X j , ∀j = 1, . . . ,n]qi .

To �nish the proof, it su�ces to show that

E[Xi | Xi > αi ] ≥ E[Xi | Xi ≥ X j , ∀j = 1, . . . ,n] .

Indeed, for x > αi , we have P(Xi > x | Xi > αi ) =
∫ ∞
x

1

qi
dFi (t), while, if x ≤ αi , the previous

probability equals 1. On the other hand,

P(Xi > x | Xi ≥ X j ∀j = 1, . . . ,n) =
∫ ∞

x

∏
j,i Fj (t)
qi

dFi (t) .

From this, it follows that P(Xi > x | Xi > αi ) ≥ P(Xi > x | Xi ≥ X j , ∀j = 1, . . . ,n) for all x ≥ 0.

�us, Xi | (Xi > αi ) stochastically dominates Xi | (Xi ≥ X j ∀j = 1, . . . ,n), and the conclusion

follows.

When some Fi are not continuous, it could be the case that there is no αi such that 1− Fi (αi ) = qi
or that

∑
qi > 1. If the former happens, the result still holds provided αi is chosen randomly. �e

la�er case is solved by slightly perturbing the support of the random variables in a way that the

probability that two or more are the maximum simultaniously is negligible. �

3 NONADAPTIVE POSTED PRICE MECHANISMS
In this section we prove our main result, namely, �eorem 1.1. Recall that we have a single item

on sale, a set of customers I, and for customer i ∈ I her valuation for the item is vi ∼ Fi . As

is standard in the literature, we say that a distribution Fi is regular if the virtual value function
ci (v) = v − (1 − Fi (v))/fi (v) is nondecreasing, where fi is the density of Fi .

Besides the Bernoulli Selection Lemma, key to our analysis is the by now classic result of Chawla

et al. [6].

Lemma 3.1 ([6, Lemma 4]). If all value distributions are regular, then the expected value of Myerson’s
optimal auction is bounded from above by∑

i ∈I
F−1

i (1 − qMi )qMi ,

where qMi is the probability that the optimal auction assigns the item to i .
Furthermore, for every i (with regular or nonregular value distribution) there exist two prices pi and

pi , with corresponding probabilitiesqi andqi , and a number 0 ≤ xi ≤ 1, such that xiqi+(1−xi )qi = qMi ,
and the expected revenue of Myerson’s optimal auction is bounded from above by∑

i ∈I
xipi qi + (1 − xi )pi qi .

Theorem 1.1. For any given set of potential customers I, there exists a nonadaptive posted price
mechanism that achieves an expected revenue of at least a 1− 1/e fraction of that of Myerson’s optimal
auction on I.

Proof. We prove the regular case �rst. Let qMi denote the probability with which Myerson’s

optimal auction assigns the item to customer i ∈ I, and set bi = F−1

i (1−qMi ). �e expected revenue

of a nonadaptive posted price mechanism, that chooses to sell only to customers in S ⊆ I while
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o�ering prices bi , is given by∑
i ∈S

biP[i = argmin

j ∈S
{σ (j) |vj ≥ bj }] =

∑
i ∈S

biq
M
i P[i = argmin

j ∈S
{σ (j) |vj ≥ bj } | vi ≥ bi ]

=
∑
i ∈S

biq
M
i

∑
R⊆S\{i }

1

1 + |R |
∏
j ∈R

qMj

∏
j ∈S\(R∪{i })

(1 − qMj )

=
∑
i ∈S

biq
M
i E

[
1

1+
∑
j∈S\{i } X j

]
= E

[∑
i∈S biXi∑
i∈S Xi

]
,

where {Xi }i ∈I are Bernoulli random variables with Xi = 1 with probability qMi . By the Bernoulli

Selection Lemma we can choose the set S ⊆ I to be such that the la�er is lower bounded by(
1 − 1

e

)
max

zi ≤qMi

{∑
i ∈I

bizi

��� ∑ zi ≤ 1

}
≥

(
1 − 1

e

) ∑
i ∈I

F−1

i (1 − qMi )qMi .

�erefore, Lemma 3.1 leads to the desired conclusion.

In the nonregular case, the posted price mechanism runs a lo�ery between two prices to get the

desired bound.
6

First, for every bidder with positive probability of winning the optimal auction, set

b ′i =
xipi qi + (1 − xi )pi qi

qMi
,

where the variables are de�ned as in the lemma. Also consider the same Bernoulli random variables

presented in the �rst part of the proof. �e nonadaptive posted price mechanism sells only to a

set S ′ of customers (to be de�ned). For every i ∈ S ′, it o�ers a random price pi equal to pi with

probability xi , and pi otherwise. �is way, the a priori probability that vi is above the price o�ered

is exactly xiqi + (1 − xi )qi = qMi , while the expected revenue of the mechanism can be evaluated as∑
i ∈S ′

xipi qiP[i = argmin

j ∈S ′
{σ (j) |vj ≥ pj } | vi ≥ pi , pi = pi ]

+ (1 − xi )pi qiP[i = argmin

j ∈S ′
{σ (j) |vj ≥ pj } | vi ≥ pi , pi = pi ]

=
∑
i ∈S ′
(xipi qi + (1 − xi )pi qi )

∑
R⊆S ′\{i }

1

1 + |R |
∏
j ∈R

qMj

∏
j ∈S ′\(R∪{i })

(1 − qMj )

=
∑
i ∈S ′

b ′iq
M
i E

[
1

1+
∑
j∈S′\{i } X j

]
= E

[∑
i∈S′ b′iXi∑
i∈S′ Xi

]
.

By the same argument as before, Lemma 1.2 implies that there exists S ′ ⊆ I such that the la�er is

lower bounded by (1− 1/e)∑i ∈I b
′
iq

M
i . Lemma 3.1 implies the bound over the optimal auction. �

Tight instance with i.i.d. valuations. We construct a family of instances for Problem 1 with

i.i.d. customer valuations, such that, for all ε > 0, there is an instance from this family for which

no nonadaptive strategy can achieve an expected revenue within a factor (1 + ε)(1 − 1/e) of the

optimal expected revenue. �e idea is to mimic the instance that makes the Bernoulli Selection

6
�is lo�ery can be derandomized using standard techniques, since each combination of prices o�ered to the customers

is a deterministic mechanism in itself and the random mechanism is simply a lo�ery over, and thus a convex combination

of, those deterministic mechanisms.
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Lemma tight, but here we achieve this with i.i.d. valuations. Consider n2
customers whose values

are independent identically distributed according to

V =


n
e−2

w.p.
1

n3
,

1 w.p.
1

n ,

0 w.p. 1 − 1

n −
1

n3
.

�en, it is easy to design an auction that achieves a revenue approaching (e − 1)/(e − 2) as n →∞.

Indeed, consider the auction that o�ers the item for price n/(e−2)−c (with c a small value, say c = 2)

to any bid above that price (and assigns the item at random if more than one such o�er is received),

and if no such bid is received, then it runs a lo�ery at price 1 among all the bids above that price. As

there are many buyers of value 1, a potential large value customer will prefer to make a revenue of

c rather than risking to lose the item in the lo�ery. �erefore the revenue the auction will generate

will approach 1/(e − 2) + 1 as n → ∞. Of course, the revenue of the optimal auction is then at

least this quantity. On the other hand, the best posted price mechanism o�ers a price of 1 to, say,

customers 1, . . . ,k and n/(e − 2) to the rest of the customers, for some well chosen value of k which

turns out to be roughly n. One can show that in the limit the revenue approaches ( 1

e−2
+ 1)(1− e−1).

4 ADAPTIVE POSTED PRICE MECHANISM
In the previous section we considered the se�ing in which the posted price only depends on the

customer, not on the order. In this section we consider the se�ing in which the posted price may

depend both on the customer and on the customers that arrived before her. We design an adaptive

posted price mechanism that achieves an expected revenue of at least a 0.745 fraction of that of

the optimal mechanism. In particular we prove the following.

Theorem 1.3. For any given set of potential customers I whose values are independent and iden-
tically distributed, there exists an adaptive posted price mechanism that achieves an expected revenue
of at least a 1/β > 0.745 fraction of that of Myerson’s optimal auction on I, where β is the unique
value such that ∫

1

0

1

y(1 − ln(y)) + (β − 1)dy = 1 .

We assume that the valuations of the customers are i.i.d. with cumulative distribution function

F (·) and probability density function f (·). For our analysis the bound provided by Lemma 3.1 is

not enough, so we derive an exact expression for the expected revenue of the optimal auction.

Expected value of Myerson’s optimal auction for i.i.d. customers. Following Myerson [19],

we de�ne the virtual valuation as c(v) = v− 1−F (v)
f (v) and the ironed virtual valuation as c̄(v) = G ′(F (v)),

where G = conv(H )7 is the convexi�cation of the negative revenue curve H (q) =
∫ q

0
c(F−1(θ ))dθ

as a function of the acceptance probability q. Also, let E(MY(n, F )) be the expected revenue of the

optimal auction over n customers with values drawn from distribution F .

�e expected pro�t of the optimal auction equals its expected virtual surplus (see, e.g., [12]), i.e.,

the sum over all customers of the expected value of the maximum of c̄ above zero. Note that c̄ is

an increasing function, and let v∗ be the value at which c̄(v∗) = 0 or zero, if no such value exists.

�en, the la�er can be evaluated as:

E(MY(n, F )) =
∫ ∞

v∗
nF (v)n−1c̄(v)f (v)dv .

7G(q) = min {γH (q1) + (1 − γ )H (q2) : γq1 + (1 − γ )q2 = q, γ , q1, q2 ∈ [0, 1]}. Note that if c(v) is monotone (also

known as regular), then G(q) = H (q).
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Performing the change of variables q = 1 − F (v) and α∗ = 1 − F (v∗), we obtain

E(MY(n, F )) = n
∫ α ∗

0

(1 − q)n−1c̄(F−1(1 − q))dq

= n

∫ α ∗

0

(1 − q)n−1G ′(1 − q)dq

= −nG(1 − q)(1 − q)n−1

���α ∗
0

−
∫ α ∗

0

n(n − 1)(1 − q)n−2G(1 − q)dq

= nG(1) − nG(F (v∗))F (v∗)n−1 − n(n − 1)
∫ α ∗

0

(1 − q)n−2G(1 − q)dq .

Since c̄(v∗) = 0, we know that G a�ains a minimum at F (v∗) and, therefore, equals H (F (v∗)) at that

point. Now, observe that

H (q) =
∫ q

0

F−1(θ ) − 1 − θ
f (F−1(θ ))dθ = −(1 − q)F

−1(q) .

�erefore, we can conclude that

E(MY(n, F )) = −nH (F (v∗))F (v∗)n−1 − n(n − 1)
∫ α ∗

0

(1 − q)n−2G(1 − q)dq

= nv∗(1 − F (v∗))F (v∗)n−1 − n(n − 1)
∫ α ∗

0

(1 − q)n−2G(1 − q)dq .

Now, let

Ḡ(1 − q) =
{
−G(1 − q) if 1 − q > F (v∗) ,
v∗(1 − F (v∗)) otherwise .

�en, we can write the expected revenue of the optimal mechanism as

E(MY(n, F )) = n(n − 1)
∫

1

0

(1 − q)n−2Ḡ(1 − q)dq . (4)

We note that expression (4), although fairly natural to derive, appears to be new.

Adaptive posted price mechanism. In the adaptive se�ing, the price o�ered to a customer also

depends on the set of customers that declined the o�er. However, as the customers are i.i.d., an

adaptive pricing mechanism only needs to know how many customers have received an o�er and

not exactly which customers. �e intuition behind the mechanism is to start with a high price and

decrease the price when the number of remaining customer decreases, such that the risk of not

selling is mitigated. To describe the mechanism, we �rst restrict to monotone virtual valuations,

and then describe how to deal with the general case.

We partition the interval A = [0, 1] into n intervals Ai = [εi−1, εi ], with 0 = ε0 < ε1 < . . . <
εn−1 < εn = 1. �e pricing mechanism will thus choose a price for customer i such that the

probability that this customer accepts the o�er lies in Ai , making sure that no customer will ever

receive an o�er lower than the reservation price v∗. To implement this idea we use Expression (4)

as a guide and construct the o�er for customer i by drawing a qi from the interval Ai according to

probability density function fi (q) = ψ (q)
αi

,
8

whereψ (q) = (n − 1)(1 − q)n−2
and αi is a normalization

8
Just as for the non-adaptive mechanism, this randomization can be derandomized using standard techniques, since each

combination of set prices for the customers is in itself a deterministic mechanism and the random mechanism is simply

a lo�ery over, and thus a convex combination of, those deterministic mechanisms.
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parameter equal to αi =
∫
q∈Ai

ψ (q)dq. �is qi is meant to be the acceptance probability of customer

i , so the price o�ered to her is max{F−1(1 − qi ),v∗}.
Note that due to the assumption that the virtual valuations are monotone, we know that when

o�ering a price F−1(1−qi ), the expected pro�t of customer i is qiF
−1(1−qi ) = −H (1−qi ) = Ḡ(1−qi ).

For nonmonotone virtual valuations, it might be the case that qiF
−1(1−qi ) = −H (1−qi ) < Ḡ(1−qi ),

and by o�ering a price F−1(1 − qi ) we might not get the best revenue. To circumvent this prob-

lem, we can randomize between two acceptance probabilities qi1 and qi2 such that G(1 − qi ) =
γH (1 − qi1) + (1 − γ )H (1 − qi2) and qi = γqi1 + (1 − γ )qi2.

With the mechanism in place we now establish the approximation guarantee. To this end we

prove that the expected revenue of the adaptive posted price mechanism with n customers whose

valuations are drawn from F , E(ADAP(n, F )), satis�es

E(ADAP(n, F )) ≥
n∑
i=1

ρi

∫ εi

εi−1

(n − 1)(1 − q)n−2Ḡ(1 − q)dq ,

where ρ1 =
1

α1

and ρi+1 =
ρi
αi+1

∫ εi
εi−1

ψ (q)(1 − q)dq for i = 1, . . . ,n − 1.

By choosing ε1, . . . , εn−1 in such a way that ρ1 = ρ2 = . . . = ρn , we have E(ADAP(n, F )) ≥
1

nα1

E(MY(n, F )), and thus we wrap-up by proving that the term 1/(nα1) is bounded by 0.745. For

the la�er we set up a recursion whose solution determines α1 and then approximate the recursion

with an ordinary di�erential equation.

Relating the optimal auction and the adaptive posted price mechanism.

Lemma 4.1. Let ρ1 =
1

α1

and ρi+1 =
ρi
αi+1

∫ εi
εi−1

ψ (q)(1 − q)dq for i = 1, . . . ,n − 1. �en the ex-
pected value of the adaptive posted price mechanism that faces n customers with value distribution
F , E(ADAP(n, F )), satis�es

E(ADAP(n, F )) ≥
n∑
i=1

ρi

∫ εi

εi−1

(n − 1)(1 − q)n−2Ḡ(1 − q)dq .

Proof. First, assume that the item is o�ered to customer i . Let qi denote the drawn acceptance

probability for customer i . �e expected revenue obtained from selling the item to customer i is

Ḡ(1 − qi ). To see this, suppose that qi < 1 − F (v∗). �en, for monotone virtual valuations, the price

o�ered to customer i is F−1(1 − qi ), and thus the expected revenue is qiF
−1(1 − qi ) = −G(1 − qi ) =

Ḡ(1−qi ). On the other hand, if qi > 1−F (v∗), the price o�ered to customer i isv∗ which is accepted

with probability 1 − F (v∗). Similar arguments hold when the virtual valuation is not monotone.

Now, for j = 1, . . . ,n, let qj denote the drawn acceptance probability of customer j. �en, the

probability that the item is o�ered to customer i is equal to Πi−1

j=1
max{1 − qj , F (v∗)}. Hence, the
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expected value of our adaptive posted price mechanism is

E(ADAP(n, F )) =

∫ ε1

0

ψ (q1)
α1

[
Ḡ(1 − q1) +max{1 − q1, F (v∗)}

∫ ε2

ε1

ψ (q2)
α2

[
Ḡ(1 − q2)

+max{1 − q2, F (v∗)}
∫ ε3

ε2

ψ (q3)
α3

[
Ḡ(1 − q3) + . . .

+max{1 − qn−2, F (v∗)}
∫ εn−1

εn−2

ψ (qn−1)
αn−1

[
Ḡ(1 − qn−1)

+max{1 − qn−1, F (v∗)}
∫

1

εn−1

ψ (qn)
αn

Ḡ(1 − qn)dqn
]
dqn−1 . . .

]
dq3

]
dq2

]
dq1

≥
∫ ε1

0

ψ (q1)
α1

[
Ḡ(1 − q1) + (1 − q1)

∫ ε2

ε1

ψ (q2)
α2

[
Ḡ(1 − q2)+

+ (1 − q2)
∫ ε3

ε2

ψ (q3)
α3

[
Ḡ(1 − q3) + . . .

+ (1 − qn−2)
∫ εn−1

εn−2

ψ (qn−1)
αn−1

[
Ḡ(1 − qn−1)

+ (1 − qn−1)
∫

1

εn−1

ψ (q3)
α3

Ḡ(1 − qn)dqn
]
dqn−1 . . .

]
dq3

]
dq2

]
dq1

and the la�er equals

1

α1

∫ ε1

0

ψ (q1)Ḡ(1 − q1)dq1 +
1

α1

∫ ε1

0
ψ (q1)(1 − q1)dq1

α2

∫ ε2

ε1

ψ (q2)Ḡ(1 − q2)dq2 + . . .

+
1

α1

∫ ε1

0
ψ (q1)(1 − q1)dq1

α2

· . . . ·

∫ εn−1

εn−2

ψ (qn−1)(1 − qn−1)dqn−1

αn

∫
1

εn−1

ψ (qn)Ḡ(1 − qn)dqn

=

n∑
i=1

ρi

∫ εi

εi−1

(n − 1)(1 − q)n−2Ḡ(1 − q)dq . �

By choosing ε1, . . . , εn−1 appropriately, we can lower bound the expected revenue of the adaptive

posted price mechanism against that of Myerson.

Lemma 4.2. If we choose ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn , then

E(ADAP(n, F )) ≥ 1

nα1

E(MY(n, F )) .

Proof. If we choose ε1, . . . , εn−1 such that ρi = ρ1 for all i , then by Lemma 4.1 we can bound

the expected value of our mechanism by

E(ADAP(n, F )) ≥
n∑
i=1

ρi

∫ εi

εi−1

(n − 1)(1 − q)n−2Ḡ(1 − q)dq

=
ρ1

n

n∑
i=1

∫ εi

εi−1

n(n − 1)(1 − q)n−2Ḡ(1 − q)dq

=
1

nα1

∫
1

0

n(n − 1)(1 − q)n−2Ḡ(1 − q)dq = 1

nα1

E(MY(n, F )) . �
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Bounding α1 through a recursion. Since ρi+1 =
ρi
αi+1

∫ εi
εi−1

ψ (q)(1 − q)dq for all i , choosing

ε1, . . . , εn−1 such that all ρi are the same amounts to choosing them such that

∫ εi
εi−1

ψ (q)(1 − q)dq =
αi+1 for all i . By de�nition of αi+1 andψ (q), this is equivalent to choosing them such that for all i∫ εi

εi−1

ψ (q)(1 − q)dq = n − 1

n
((1 − εi−1)n − (1 − εi )n)

is equal to ∫ εi+1

εi
ψ (q)dq = (1 − εi )n−1 − (1 − εi+1)n−1 .

Now, substitute xi = 1 − εi . �en, from Lemma 4.2, we obtain the following recursion on xi :

xi−1

n

n
− xi

n

n
=

xi
n−1

n − 1

− xi+1

n−1

n − 1

, (5)

where x0 = 1 and xn = 0. Moreover,

α1 =

∫ ε1

0

ψ (q)dq = 1 − x1

n−1 .

Combining this with Lemma 4.2, we see that if
1

n(1−x1
n−1) ≥

1

β , for some β ≥ 1, then the adaptive

posted price mechanism has an expected revenue that is at least a
1

β fraction of the expected

revenue of Myerson’s optimal auction.

Note that
1

n(1−x1
n−1) ≥

1

β if and only if x1 ≥ (1 − β
n )1/(n−1)

. �us, if we �nd the minimum value

β for which x1 < (1 − β
n )1/(n−1) =⇒ xn < 0, we know that x1 ≥ (1 − β

n )1/(n−1)
for that value of β .

Hence, we show an upper bound on the sequence xi . For this, we use the following lemma.

Lemma 4.3. For values x0,x1, . . . ,xn satisfying (5) and x0 = 1 and xn = 0, we have for i =
1, . . . ,n − 1,

xi+1 =

(
n − 1

n
xi

n + x1

n−1 − n − 1

n

)
1/(n−1)

.

Proof. We prove this lemma by induction. For i = 1 equation (5) gives

x2 =

(
x1

n−1 +
n − 1

n
x1

n − n − 1

n

)
1/(n−1)

.

Now, suppose the claim is true for i = 1, . . . , j. From (5), we know that

x j+1

n−1 = x j
n−1 +

n − 1

n
x j

n − n − 1

n
x j−1

n

=
n − 1

n
x j−1

n + x1

n−1 − n − 1

n
+
n − 1

n
x j

n − n − 1

n
x j−1

n

=
n − 1

n
x j

n + x1

n−1 − n − 1

n
,

where the second equality is due to the induction hypothesis. �

Bounding the recursion through a di�erential equation. In the following, we show that

each of the terms xi in the recursion can be bounded with a function y(t) : [0, 1] → R, de�ned

through the following di�erential equation. All derivatives of y are with respect to t .

y ′ = y(ln(y) − 1) − (β − 1) ,
y(0) = 1 .

(ODE)
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Furthermore, we de�ne y(1) = limt ↑1 y(t) as the continuous extension of y(t). Later on, we will

choose β ≈ 1.34. For this β , we have y ∈ [0, 1], so we restrict our analysis of (ODE) to this interval.

We assume β > 1.25 and y ∈ [0, 1]. We validate these assumptions at the end of our analysis.

We now proceed to prove that the solution of (ODE) dominates the terms of the recurrence. In

this proof, we make use of the following technical results.

Lemma 4.4. Di�erential equation (ODE) has a unique solution y(t), which is a decreasing and
strictly convex function on the interval [0, 1]. Furthermore, y ′′′(t) > 0 for y ∈ (0, 1).

Proposition 4.5. If x ∈ (0, 1] and n ≥ 2, then

x +
x(ln(x) − 1)

n
+
x(ln(x) − 1) − (β − 1)

2n2
ln(x) ≥ n − 1

n
x

n
n−1 .

Using this inequality, we bound the recurrence by the function y(t) in the following way.

Lemma 4.6. If x1 < (1− β
n )

1

n−1 , then xi n−1 < y( in ) for i = 1, . . . ,n, where y(t) is the unique solution
of (ODE).

Proof. First note that x0 = y(0) = 1, by de�nition. Moreover, a straightforward computation

shows that y ′(0) = −β . As y(t) is strictly convex, we know that y(1/n) > y(0) − 1

n β > x1

n−1
,

where the last inequality follows by assumption. Now assume that xi
n−1 < y( in ), then we prove

xi+1

n−1 < y( i+1

n ). First observe that the Taylor expansion of y( i+1

n ) around
i
n is

y( i+1

n ) = y(
i
n ) +

1

n
y ′( in ) +

1

2n2
y ′′( in ) +

1

6n6
y ′′′(ζ ) ,

with ζ ∈ [ in ,
i+1

n ]. As y ′′′ > 0, it follows that

y( i+1

n ) > y(
i
n ) +

1

n
y ′( in ) +

1

2n2
y ′′( in )

= y( in ) +
y( in )(ln(y(

i
n )) − 1) − (β − 1)

n
+
y( in )(ln(y(

i
n ) − 1) − (β − 1))

2n2
ln(y( in ))

≥ n − 1

n
y( in )

n
n−1 − β − 1

n
>

n − 1

n
xni −

β − 1

n
> xn−1

i+1
,

where the second inequality is due to Proposition 4.5 and the last inequality follows from Lemma

4.3 and the assumption that xn−1

1
< 1 − β

n . �

We now �nish the proof of �eorem 1.3.

Proof of Theorem 1.3. Choosing 0 = ε0 < ε1 < . . . < εn−1 < εn = 1 such that for all i∫ εi
εi−1

ψ (q)(1 − q)dq = αi+1, we know by Lemma 4.2 that

E(ADAP(n, F )) ≥ 1

nα1

E(MY(n, F )) ,

where α1 = 1−(1−ε1)n−1 = 1−xn−1

1
. Hence, we want to show

1

n(1−xn−1

1
) ≥

1

β for β ≈ 1.3415 < 1

0.745
.

We prove by contradiction and assume xn−1

1
< 1 − β

n . �en Lemma 4.6 yields xn < y(1), so we

choose β such that y(1) = 0 to reach a contradiction with the fact that xn = 0. Note that this indeed

implies y ∈ [0, 1] as we assumed. Hereto, note that y(t) is invertible by Lemma 4.4. Hence, we
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can consider t as a function of y, for which we know t(1) = 0, and we want to choose β such that

t(0) = 1. In particular, we have that

t(1) = t(0) +
∫

1

0

dt

dy
dy = 1 +

∫
1

0

1

dy
dt

dy = 1 +

∫
1

0

1

y(ln(y) − 1) − (β − 1)dy .

So β is the value such that the last integral equals −1. �is yields β ≈ 1.3415 < 1

0.745
. �

Extension. As we did in Corollary 2.2 of Section 2, we can extend our result in �eorem 1.3 to

an adaptive version of the prophet inequality.

Corollary 4.7. Given nonnegative i.i.d. random variables, X1, . . . ,Xn , with Xi ∼ F for all i , there
exist thresholds, τ1, . . . ,τn , such that for a sequence σ , drawn uniformly at random, the expected value
of the �rst variable that exceeds its threshold according to that sequence, Xσ (i) ≥ τi , is at least a 1/β
fraction of the expected value of max{X1, . . . ,Xn}.

Proof. When F is continuous and strictly increasing, we express the expected value of the

maximum in a convenient way:

E

(
max

i=1, ...,n
Xi

)
= n

∫
1

0

tFn−1dF (t) = n
∫

1

0

(1 − q)n−1F−1(1 − q)dq

= n

∫
1

0

(n − 1)(1 − q)n−2

(∫ q

0

F−1(1 − θ )dθ
)
dq = n

∫
1

0

(n − 1)(1 − q)n−2R(q)qdq ,

where R(q) = E(X | X > F−1(1 − q)) is the expected value of a random variable given that the prob-

ability that that variable a�ains a larger value is at most q (here, X ∼ F ). As we did in the previous

mechanism, we partition [0, 1] into n intervals Ai = [εi−1, εi ], 0 = ε0 < ε1 < . . . < εn−1 < εn = 1,

and we set a threshold τi = F−1(1−qi ) for the random variable arriving at step i , where qi is drawn

from the intervalAi according to the probability density fi (q) = (n−1)(1−qi )n−2

αi
with αi =

∫ εi
εi−1

ψ (q)dq.

Since R(q) corresponds to the expected value we get when se�ing threshold F−1(1 − q), one can

prove – following the same reasoning as the analogous part in the proof of �eorem 1.3 – that the

expected revenue of this strategy is equal to

n∑
i=1

ρi

∫ εi

εi−1

(n − 1)(1 − q)n−2R(q)q dq , (6)

where ρ1 =
1

α1

and ρi+1 =
ρi
αi+1

∫ εi
εi−1

(n − 1)(1 − q)n−1dq for i = 1, . . . ,n − 1. Again, if we choose

ε1, . . . , εn−1 such that ρ1 = ρ2 = . . . = ρn , and solve the recurrence {εi }n−1

i=1
satis�es, then expression

(6) equals
1

nα1

E
(
maxi=1, ...,n Xi

)
≥ 1

β E
(
maxi=1, ...,n Xi

)
.

If F is not strictly increasing, replacing F−1(1−q) by arg max F−1(1−q)maintains the correctness

of the proof. In the case that F is not continuous, one must be more careful when expressing the

expected value of the maximum. �e result still holds provided the thresholds are chosen randomly,

a�er sampling the probability of acceptance q. �

Remark. A routine exercise shows that the sequence an de�ned by Hill and Kertz [13] exactly

equals our nα1. Note here that our α1 does depend on n, though we have omi�ed this dependency

for simplicity of notation. �us our result implies that an ≤ β and by the work of Kertz [14] we

know that this bound is tight.
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