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Abstract

Network congestion games have provided a fertile ground for the algorithmic game theory
community. Indeed, many of the pioneering works on bounding the efficiency of equilibria use
this framework as their starting point. In recent years, there has been an increased interest
in studying randomness in this context though the efforts have been mostly devoted to under-
standing what happens when link latencies are subject to random shocks. Although this is an
important practical consideration, it is not the only source of randomness in network congestion
games. Another important source is the inherent variability of the demand that most practical
networks suffer from. Therefore in this paper we look at the basic non-atomic network conges-
tion game with the additional feature that demand is random. Our main result in this paper is
that under a very natural equilibrium notion, in which the basic behavioral assumption is that
users evaluate their expected cost according to the demand they experience in the system, the
price of anarchy of the game is actually the same as that in the deterministic demand game.
Moreover, the result can be extended to the more general class of smooth games.

1 Introduction

A traffic network consists of a network on which many different entities make autonomous decisions
about how to use that network. In a physical traffic network, this would be the users choosing the
route that they take from their origin to their destination. Non-atomic network congestion games
are a fundamental model in game theory used to model traffic flows in both physical and digital
traffic networks. The model assumes a very large population of users of a network that are selfish
and minimize some objective function, most often their own travel time. The choice that a user
gets to make is then simply the route that she takes from her origin to her destination. The amount
of traffic that she encounters (the congestion) on this route then influences her travel time, and, in
turn, the routes that all the users choose influence the congestion that they all observe.

It is well known that when users of systems make autonomous choices the resulting usage of
the system may be inefficient [24]. This phenomenon has captured the attention of researchers and
practitioners for quite a long time, see, e.g., Dubey [10]. To assess this efficiency loss, assumptions
are made on what the outcome of such a game of autonomous users is. In network congestion
games this is often assumed to be an equilibrium outcome, in which no single user can improve
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their objective by unilaterally deviating from their choice. These equilibria are also known as Nash
equilibria [18] or Wardrop equilibria [34], depending on the specifics of the game. When we talk
about efficiency in the network usage, we need a concept of social cost. The most prominent concept
that has been used is the utilitarian social objective, which in the case of network congestion games
is the total travel time of the users. In the last decades, we have seen an effort to put quantification
to this loss in efficiency. Koutsoupias and Papadimitriou [16, 15] introduced, what was later named
the price of anarchy as the worst case ratio between the social objective in a worst case equilibrium
outcome and the social objective in an socially optimized solution [23].

Since its introduction, the price of anarchy has been widely studied in the context of congestion
games. Roughgarden and Tardos [30, 26] bounded the price of anarchy of the non-atomic network
congestion game and showed that the bound only depends on the class of latency functions. In
particular, they bound the price of anarchy by 4/3 in networks with affine latencies. Later, Correa
et al. [7, 8] extend this result to the capacitated context and provide a geometric proof allowing
more general cost functions. Similar results were also obtained for a number of variants of the game,
namely with atomic players [2, 4], with atomic splittable players [5, 13, 29], and with large number
of players [3], among many others. All these results however, apply to deterministic situations.

More recently there has been a growing interest in having a theoretical understanding of vari-
ability in travel times in network congestion games. The issue of uncertainty is certainly of high
practical relevance and has been an object of study in the transportation science community for
many decades now. The work by Dial [9] and Sheffi [31] can be considered as a first approach of
capturing uncertainty in network congestion games. They study a model where the perception of
travel time among users varies, but the travel time is in fact deterministic. On the other hand,
Abdel-Aty et al. [1] show empirically that the variability of travel times is one of the most im-
portant factors in making routing decisions. This is indeed natural, as in physical traffic networks
travel times are rarely constant, because of numerous causes, like unexpected crashes, bad weather,
construction works and other irregular events. Uncertainty in more recent models is often asso-
ciated with a random variable with a known probability distribution and the choice of the users
depends on their risk aversion. Fan et al. [11] and Nie and Wu [19] use the expected probability
of arriving on time as an objective for the users. Ordóñez and Stier-Moses [22] assume that users
minimize the α quantile of the experienced travel time. Whereas Nikolova and Stier-Moses [20] let
users minimize expected delay plus a safety margin, approximated by the standard deviation of
the distribution. Qi et al. [25] assume that the probability distribution is not fully known and thus
analyze the effect of risk and ambiguous attitudes on path choices. Finally, Cominetti and Torrico
take an axiomatic approach to risk aversion [6]. In the context of risk aversion, quantifying the
price of anarchy becomes more difficult (it is often unbounded) and actually it is less clear what
the right concept of social cost should be [21, 17].

Somewhat surprisingly, most of the work on travel time uncertainty in network congestion games
focuses on variability on the links in the network. One drawback of this approach is that if users
simply minimize their expected cost, this link variability has no effect on the flow reducing the
problem immediately to the deterministic link cost case. Therefore risk aversion has to come into
play making the analysis much more complicated and introducing some unintuitive consistency
issues [6]. However, another fundamental source of travel time variability and congestion comes
from the inherent randomness of the demand pattern. In this paper, we are interested in the latter
source of variability so we consider a basic network congestion game with incomplete information
where the demand is random and users simply minimize their expected travel time. So far, this
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has been considered only by Wang, Doan, and Chen [33], who found that the price of anarchy can
become arbitrarily large, depending on the variability of the demand. However, as we show in this
paper, the negative result of Wang et al. finds its roots in the way equilibria are defined. In their
definition, a user bases her decisions on the full knowledge of the demand distribution (even though
she may have never experienced the highly congested scenarios). Here we provide an alternative
view. We define an equilibrium where the knowledge of users is limited to the demand they actually
observe. In other words, each user bases her decisions on the demand distribution conditioned on
the fact that she is traveling. The concept has a solid micro foundation that is in line with that of
the Perfect Bayesian equilibrium [12] and allows us to prove that for this observed equilibrium the
price of anarchy does not depend on the variability in the demand, but only on the class of latency
functions found in the network. A result in the same spirit as that for network congestion games
without variable demand [26, 7].

Network congestion games are an example of smooth games [27]. Smoothness is a general tech-
nique that turns out to be fruitful to prove inefficiency results. These inefficiency proofs do not only
apply to Nash equilibria, but also to many other reasonable solution concepts, like mixed nash equi-
libria, correlated equilibria and coarse-correlated equilibria. Recently, [32] and [28] provided a set
of conditions under which full-information price of anarchy bounds extend to mixed Bayesian-Nash
equilibria of every corresponding game of incomplete information with a product prior distribution.
We prove a similar result for the setting in which there is uncertainty about which players play the
game.
Our contribution. The main contribution of this paper is of a conceptual nature. We consider
the basic network congestion game with variable demand. This variable demand is modeled as
several groups of users that either use the network or do not. The microscopic modeling of the
situation requires an underlying probability measure pD over the subsets of users, so that the
subset of users S travel with probability pD(S). However, this measure is unknown to the users
of the network who only know their own marginals. Note that we do not make any assumptions
on the probability measure underlying the usage of the network. Thus, e.g., whether two different
groups use the network may be highly correlated, or not at all. For technical reasons we consider
probability measures over a finite number of subsets, through larger and larger numbers of subsets
we can model arbitrary situations. Writing the limit model (i.e., with uncountable many possible
subsets) requires significant measure theoretic technicalities that go beyond the scope of this paper.

Within the above setting, in Subsection 2.2, we introduce a new equilibrium notion for systems
with variable demand, the observed equilibrium. Naturally, for this notion a user evaluates the
expected cost of different paths only using her knowledge of the conditional probability measure.
Subsection 2.3 uses this new equilibrium notion to show that in network congestion games equi-
librium solutions do not deteriorate more when variability in the demand is introduced. More
precisely, we prove that the price of anarchy in network congestion games with variable demand is
bounded by 1/(1− β), where β is the standard latency-function class dependent parameter [26, 7].
With this result, we give an alternative to the pessimistic conclusion by Wang et al. [33]. Not only
do we show a bound on the price of anarchy that is independent on the distribution of the demand,
we show that there is no increase at all compared to the system with no variable demand.

In light of the previous result one may think that the price of anarchy actually decreases with
demand variability, since already the deterministic case provides worst case instances. We prove
that this intuition is wrong and find situations with variable demand in which our bound is tight.
In Subsection 2.4, we consider the performance of our equilibrium concept when compared to a
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stronger notion of optimal flow, namely the adaptive optimum. The situation here is more mixed
and the price of anarchy depends on the underlying probability measure. Finally, in Subsection
2.5 we exhibit instances showing that the observed equilibrium can have higher expected cost than
Wang et al.’s user equilibrium. However, when latency functions consist of only sums of a monomial
and a constant, and the demand is regular enough, we prove that the observed equilibrium always
performs better than the user equilibrium.

Our equilibrium concept applies almost unchanged to the smoothness framework [27, 28, 32],
see Section 3. Particular interesting classes of games that belong to this framework are routing
games with atomic or atomic splittable players, as well as several scheduling games. Known price
of anarchy bounds for these games [2, 4, 5, 13, 29] also apply to the model in which the set of
players playing is determined stochastically.

2 Routing Games with Variable Demand

2.1 Preliminaries

We consider the following non-atomic congestion game with stochastic demand. Given are a directed
network (V,A), a finite set of commodities K, and a random variable D. Here, V denotes the set of
vertices and A denotes the set of (directed) arcs. For each arc a ∈ A, we are given a nondecreasing
differentiable convex latency function `a : R+ → R+ that represents the delay experienced by
users traversing this link as a function of the total flow on the link. Each commodity k ∈ K is
defined by a triple (sk, tk, dk), where (sk, tk) is the source-sink pair and dk is the demand. The
random variable D has probability mass function pD : 2K → [0, 1], such that pD(S) represents the
probability that only users from commodities k ∈ S travel. For a realization D = S, we say that
the commodities k ∈ S are active. Note that within the set of commodities K, the source-sink
pairs are not necessarily unique, therefore we can model, for example, the situation with several
different groups with the same source-sink pair and different travel behaviors.

For each k ∈ K, let Pk denote the set of directed sk−tk paths, where each path P ∈ Pk is given
as a subset of the arcs, P ⊆ A . A flow fk for commodity k is a nonnegative vector fk = (fkP )P∈Pk

such that
∑

P∈Pk fkP = dk. For arc a we denote by

fka =
∑
P∈Pk

P3a

fkP

the amount of flow of commodity k on arc a. Similarly, for arc a let

fa(S) =
∑
k∈S

fka

be the amount of flow on arc a if the set of active commodities is exactly S. A flow f is a vector
(fk)k∈K , where each fk is a feasible flow for commodity k.

Given a flow f , the corresponding total expected congestion cost is

C(f) =
∑
a∈A

∑
S∈2K

pD(S) · `a (fa(S)) · fa(S) .

Definition 2.1. A flow f∗ is said to be an optimal flow if it solves the following minimization
problem

min{C(f) | f is a flow} .
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2.2 Observed Equilibria

In this section we introduce observed equilibria as an equilibrium concept. We base this equilibrium
concept on the following assumptions.

• Each user aims to minimize her own expected congestion cost.

• Users have no a priori knowledge of the distribution of the demand.

• Users observe an approximate distribution of the demand by experience. Thus, they only
observe the demand when they themselves use the network.

When we use these assumptions we arrive at the following conclusion. Users minimize their own
expected cost, given some approximate demand distribution, that they know from observing when
using the network. Formally, this means that users use conditional probabilities given that the user
travels, instead of the exact distribution, to calculate expected costs. This yields the concept of
observed equilibrium.

Definition 2.2 (Observed equilibrium). A flow f is said to be an observed equilibrium if for all
k ∈ K and all P,Q ∈ P with fkP > 0∑

a∈P

∑
S∈2K
S3k

pD(S)∑
S∈2K
S3k

pD(S)
· `a (fa(S)) ≤

∑
a∈Q

∑
S∈2K
S3k

pD(S)∑
S∈2K
S3k

pD(S)
· `a (fa(S)) . (1)

Since observed equilibria are in fact Nash equilibria with an adapted objective for the players,
all the usual properties of Nash equilibria hold. In particular, there always exists an observed
equilibrium.

The following example illustrates the concept of observed equilibrium.

s t

`1(x1) = x1

`2(x2) = 1

Figure 1: A two-link parallel network.

Example 2.3. Consider the network in Fig. 1. Let K = {k1, k2}, where both k1 and k2 are defined
by (s, t, 1). Assume that pD({k1}) = 1

2 and pD(K) = 1
2 . Notice that even though both commodities

are defined by the same triple, the two groups of users have asymmetric information: commodity
k1 faces a game of incomplete information, whereas k2 knows (from past experience) that k1 also
travels when k2 is selected for travel. The observed equilibrium is f1 = (1, 0) and f2 = (0, 1),
yielding an expected congestion cost of C(f) = 3/2. The optimal flow is f∗1 = (1/2, 1/2) and
f∗2 = (0, 1), yielding an expected congestion cost of C(f∗) = 5/4.

Similar as in the deterministic demand model, we can reformulate the equilibrium condition as
a variational inequality.
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Lemma 2.4. A flow f is an observed equilibrium if and only if for all flows g∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · (fka − gka) ≤ 0 . (2)

Proof. Assume (2) is satisfied. We show that (1) holds. Let k ∈ K and P,Q ∈ P with fkP > 0.
Define g as follows

gk
′

a =


fk
′

a if k′ 6= k, or a ∈ P ∩Q, or a /∈ P ∪Q ,
fk
′

a − fkP if k′ = k and a ∈ P \Q ,
fk
′

a + fkP if k′ = k and a ∈ Q \ P .

By construction, g is a feasible flow. We get that∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · (fka − gka)

=
∑

a∈P\Q

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · fkP −
∑

a∈Q\P

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · fkP ≤ 0 .

Dividing by fkP > 0 on both sides, and adding and subtracting∑
a∈P∪Q

∑
S∈2K
S3k

pD(S) · `a (fa(S))

yields an inequality equivalent to the observed equilibrium condition.
Now, assume that (1) is satisfied. We show that (2) holds. For all k ∈ K, there exists an πk

such that for all P ∈ P with fkP > 0 we have∑
a∈P

∑
S∈2K
S3k

pD(S) · `a (fa(S)) = πk

and for all Q ∈ P with fQ = 0 we have∑
a∈Q

∑
S∈2K
S3k

pD(S) · `a (fa(S)) ≥ πk .

Hence, ∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · fka

=
∑
k∈K

∑
P∈Pk

fkP ·
∑
a∈P

∑
S∈2K
S3k

pD(S) · `a (fa(S))
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=
∑
k∈K

πk ·
∑
P∈Pk

fkP =
∑
k∈K

πk ·
∑
P∈Pk

gkP

≤
∑
k∈K

∑
P∈Pk

gkP ·
∑
a∈P

∑
S∈2K
S3k

pD(S) · `a (fa(S))

=
∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · gka .

Again, just like in the deterministic demand setting, we can formulate observed equilibria as
solutions to a minimization problem.

Proposition 2.5. A flow f is an observed equilibrium if and only if it solves the following mini-
mization problem

min
f

∑
a∈A

∑
S∈2K

pD(S) ·
∫ fa(S)

0
`a(x)dx.

Proof. Observe that the objective functions is convex and the feasible region is convex and compact.
Thus the minimization problem is a convex optimization problem. So it is necessary and sufficient
for f to satisfy the first order optimality conditions, for all flows g∑

k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · (gka − fka ) ≥ 0,

which is equivalent to (2).

2.3 Price of Anarchy

In this section, we analyze the price of anarchy for observed equilibria in network congestion games.
Let L be a class of latency functions. For the latency function ` ∈ L, define

β(`) = sup
f,x≥0

(`(f)− `(x)) · x
`(f) · f

,

where by convention 0/0 = 1. In addition, define β(L) = sup
`∈L

β(`).

Theorem 2.6. Let f and f∗ be the observed equilibrium and optimal flow, respectively, with `a ∈ L
for all a ∈ A. Then

C(f) ≤ 1

1− β(L)
· C(f∗) .

Proof.

C(f) =
∑
a∈A

∑
S∈2K

pD(S) · `a (fa(S)) · fa(S)
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=
∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · fka

≤
∑
k∈K

∑
a∈A

∑
S∈2K
S3k

pD(S) · `a (fa(S)) · f∗ka

=
∑
a∈A

∑
S∈2K

pD(S) · `a (fa(S)) · f∗a (S)

≤
∑
a∈A

∑
S∈2K

pD(S) · (β(L) · `a (fa(S)) · fa(S) + `a (f∗a (S)) · f∗a (S))

= β(L) · C(f) + C(f∗) ,

where the first inequality follows by Lemma 2.4 and the second inequality by definition of β(L).

Note that this bound on the price of anarchy is independent of the random demand variable.
This is in contrast to the result of Wang et al. [33], for which the price of anarchy depends on
the demand distribution. Moreover, our bound is equal to the bound on the price of anarchy for
the fixed demand model [7, 30]. Since the bound is tight for that model, and observed equilibria
coincide with Nash equilibria when the demand is deterministic, the bound is also tight for the
model with variable demand. While the latter may suggest that variability in the demand could
even improve the price of anarchy, the following example shows that the bound for polynomials
with nonnegative coefficients is also tight if the distribution of the demand is non-trivial.

Example 2.7. Consider the network in Fig. 2. Let K = {k1, k2}, where both k1 and k2 are defined
by (s, t, 1).

s t

`1(x1) = xd1

`2(x2) = (1 + 2d+1)/3

Figure 2: A two-link parallel network.

Assume that pD({k1}) = 1
4 , pD({k2}) = 1

4 and pD(K) = 1
2 . The observed equilibrium is

f1 = f2 = (1, 0), yielding an expected congestion cost of

C(f) =
1 + 2d+1

2
.

The optimal flow is f∗1 = f∗2 =
(

1
(d+1)1/d

, (d+1)1/d−1
(d+1)1/d

)
, yielding an expected congestion cost of

C(f∗) =

(
1− d

(d+ 1)(d+1)/d

)
1 + 2d+1

2
.

Hence,

C(f) =

(
1− d

(d+ 1)(d+1)/d

)−1
C(f∗) = β(Ld) · C(f∗) ,
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where Ld is the set of polynomial latency functions with nonnegative coefficients and degree at
most d.

2.4 Adaptive Optimum

In this section, we compare the performance of the observed equilibrium to a stronger notion of
social optimum: the adaptive optimal flow. An adaptive flow f is a vector (fS)S∈2K , where each
fS is a vector (fk,S)k∈S where fk,S is a flow for commodity k.

Definition 2.8. An adaptive flow f∗∗ is said to be an adaptive optimal flow if it solves the following
minimization problem for all S ∈ 2K

min
fS

∑
a∈A

`a

(∑
k∈S

fk,Sa

)
·

(∑
k∈S

fk,Sa

)
.

The total expected costs of the adaptive optimal flow are

C(f∗∗) =
∑
a∈A

∑
S∈2K

pD(S) · `a

(∑
k∈S

fk,Sa

)
·

(∑
k∈S

fk,Sa

)
.

The following example shows that the observed equilibrium can perform arbitrarily worse than the
adaptive optimal flow.

Example 2.9. Consider the network in Fig. 1. Let m ∈ N, with m > 1, and let K = {k1, . . . , km2},
where ki , for each i = 1, . . . ,m2 , is defined by (s, t, 1/m). Assume that

pD({ki}) =
1− 1/m3

m2
for each i = 1, . . . ,m2, and pD(K) =

1

m3
.

This implies that each commodity observes the following random variable: with probability 1−1/m3

m2

only their own commodity travels and with probability 1
m3 all commodities travel. Let f and f∗∗

denote the observed equilibrium and the adaptive optimum, respectively. Then

fk
i

=

(
m4 +m3 −m
m5 +m4 −m

,
m− 1

m5 +m4 −m

)
for each i = 1, . . . ,m2 and

f∗∗ =

{
( 1
m , 0) if the demand is 1

m ,

(12 ,
2m−1

2 ) if the demand is m.

This yields respective expected congestion costs of

C(f) =
m3 +m2 − 1

m4

and

C(f∗∗) =
8m3 −m2 − 4

4m5
.

Hence C(f)/C(f∗∗)→∞ as m→∞.
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In order to obtain a constant upper bound, we have to restrict the set of allowable random
demand variables. To this end, let K = {k1, . . . , km} be the set of commodities. For all S ∈ 2K ,
we assume that pD(S) > 0 if and only if S = {k1, . . . , ki} for some i ∈ {1, . . . ,m}. In particular,
the sequence of sets of commodities with positive probability is a nested sequence of sets. Let L be
a class of latency functions. For the latency function ` ∈ L, define

ω (`) = sup
m∈N,(xi)mi=1,(f

i)mi=1

(
`

(
m∑
i=1

xi
)
− `

(
m∑
i=1

f i
))(

m∑
i=1

f i
)

+ `

(
m∑
i=1

xi
)(

m∑
i=1

xi
)
−

m∑
i=1

`

(
i∑

j=1
xj

)
xi

`

(
m∑
i=1

xi
)(

m∑
i=1

xi
)

where, by convention, 0/0 = 1. In addition, define ω(L) = sup
`∈L

ω(`). Notice that if we would

fix m = 1 in the definition of ω (`), then ω (`) = β(`). The extra additive term accounts for the
adaptive setting. For more details on ω(L), see [14].

Theorem 2.10. Let f and f∗∗ be the observed equilibrium and adaptive optimal flow, respectively,
with `a ∈ L for all a ∈ A. Then

C(f) ≤ 1

1− β(L)
· 1

1− ω(L)
· C(f∗∗) .

Proof. Let x = (x1, . . . , xm) be defined recursively as the Wardrop equilibrium for demand level
di given fixed flows (x1, . . . , xi−1) for each i ∈ {1, . . . ,m}. See [14] for more details on this online
Wardrop equilibrium. As x is a feasible flow, by Theorem 2.6

C(f) ≤ 1

1− β(L)
· C(x) .

But then by [14], we have

C(f) ≤ 1

1− β(L)
· C(x)

≤ 1

1− β(L)
· 1

1− ω(L)
· C(f∗∗) .

Proposition 2.11. Let L be the class of affine latency functions. Then

1

1− β(L)
· 1

1− ω(L)
≤ 16

3
.

2.5 Continuous demand

The results discussed in this paper also hold for a single commodity with a continuous demand
distribution, where we assume that every user in the commodity is equaly likely to be part of the
demand. Note that this setting is still very different from the one where a user knows the exact
distribution since the conditional distribution “favors” the higher demands.
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To illustrate this idea, we restrict our attention to single-source, single-sink networks. In order
to compare our results to the results of Wang et al. [33], we make the following assumptions. Given
are a directed single-source, single-sink network (V,A), and a random variable D with probability
density function pD : R+ → [0, 1], such that pD(x) represents the probability that a subset of x
units of users travels. Note that D is a random variable over the real numbers and not over all
possible subsets of players. We assume that for each realization x, a subset of x units of users is
drawn uniformly at random for travel.

Let P denote the set of directed s− t paths. A unit flow f is a nonnegative vector f = (fP )P∈P
such that

∑
P∈P fP = 1. For a unit flow f , let fa =

∑
P∈P fP be the amount of flow on arc a.

Since all players are symmetric and have the same information, we assume that each player plays
the same mixed strategy in equilibrium. Let f denote the unit flow of each player.

A unit flow f is an observed equilibrium with uniform selection if for all P,Q ∈ P with fP > 0,
we have∑

a∈P

∫
x∈R+

pD(x) · x∫
x∈R+

pD(x) · x dx
· `a(fa · x) dx ≤

∑
a∈Q

∫
x∈R+

pD(x) · x∫
x∈R+

pD(x) · x dx
· `a(fa · x) dx .

A unit flow g is a user equilibrium as defined by Wang et al. [33], if for all P,Q ∈ P with gP > 0,
we have ∑

a∈P

∫
x∈R+

pD(x) · `a(ga · x) dx ≤
∑
a∈Q

∫
x∈R+

pD(x) · `a(ga · x) dx . (3)

The next example shows that the observed equilibrium with uniform selection can perform
arbitrarily better than the user equilibrium of [33].

Example 2.12. Let m ∈ N, with m > 1. Define the probability, p, as p( 1
m) = m

m+1 and p(m) =
1

m+1 . Consider the network in Fig. 1 . Let f and g be the observed equilibrium and the user
equilibrium, respectively. Then

f =

(
m

m2 −m+ 1
,
m2 − 2m+ 1

m2 −m+ 1

)
and g = (1, 0) .

This yields respective expected congestion costs of

C(f) = 1

and

C(g) = m− 1 + 1/m .

Hence C(g)/C(f)→∞ as m→∞.

The following result shows that the observed equilibrium with uniform selection performs better
than the user equilibrium (3) when latency functions are of the form aa · xp + ba with aa, ba ≥ 0.

Theorem 2.13. Let f and g be the observed equilibrium and user equilibrium, respectively, with
`a(x) = aa · xp + ba for some aa, ba ≥ 0 for all a ∈ A. Then

C(f) ≤ C(g) .

11



Proof. By the variational inequality of the observed equilibrium, we have∑
a∈A

∫
x∈R+

pD(x) · x · (aa · fpa · xp + ba) · (fa − ga) dx

=
∑
a∈A

(aa · fpa · E(Dp+1) + ba · E(D)) · (fa − ga) ≤ 0 .

By the variational inequality of the user equilibrium, we have

E(D) ·
∑
a∈A

∫
x∈R+

pD(x) · (aa · gpa · xp + ba) · (ga − fa) dx

=
∑
a∈A

(aa · gpa · E(D) · E(Dp) + ba · E(D)) · (ga − fa) ≤ 0 .

Adding the above two inequalities yields∑
a∈A

aa · (fpa · E(Dp+1)− gpa · E(D) · E(Dp)) · (fa − ga)

=
∑
a∈A

aa(fpa · (E(Dp+1)− E(D) · E(Dp)) + (fpa − gpa)E(D) · E(Dp))(fa − ga)

= (E(Dp+1)− E(D) · E(Dp)) ·
∑
a∈A

aa · fpa · (fa − ga)

+ E(D) · E(Dp) ·
∑
a∈A

aa · (
p∑

i=1

fp−ia · xi−1a ) · (fa − ga)2 ≤ 0 .

Notice that if E(Dp+1) = E(D) · E(Dp), then f = g and thus C(f) = C(g). So in the remainder of
the proof we assume that E(Dp+1) > E(D) ·E(Dp), which implies that

∑
a∈A aa · f

p
a · (fa− ga) ≤ 0,

as the second term is nonnegative. Since∑
a∈A

aa · (fpa − gpa) · ga

= p ·
∑
a∈A

aa · fpa · (fa − ga)−
∑
a∈A

aa · (
p∑

i=1

(p+ 1− i) · fp−ia · gi−1a ) · (fa − ga)2 ≤ 0 ,

we have

C(f) =
∑
a∈A

(aa · fpa · E(Dp+1) + ba · E(D)) · fa

≤
∑
a∈A

(aa · fpa · E(Dp+1) + ba · E(D)) · ga

≤
∑
a∈A

(aa · gpa · E(Dp+1) + ba · E(D)) · ga = C(g) ,

where the first inequality follows from the variational inequality and the second inequality from the
observation above.

12



The last example shows that the previous result cannot be extended to more general polynomial
latency functions.

Example 2.14. Assume that pD(1) = 1
2 and pD(2) = 1

2 . Consider the network in Figure 3.
Let f and g be the observed equilibrium and the user equilibrium, respectively. Then f =

s t

`1(x) = x

`2(x) = x2 + 2/5

Figure 3: A two-link parallel network.

(115−
√
4045

90 , −25+
√
4045

90 ) and g = (13−
√
53

10 , −3+
√
53

10 ). Hence

C(f) =
115−

√
4045

36
>

1551− 115
√

53

500
= C(g) .

3 Smooth games

The main result of Section 2, the fact that the price of anarchy for non-atomic routing games with
variable demand is the same as for deterministic games, also applies to atomic routing games. It
even holds for the more general class of smooth games, as defined by Roughgarden [27]. In this
section, we first introduce smooth games in a slightly different, yet equivalent, way as compared to
Roughgarden. Then, we state the more general result.

Let K = {1, . . . , k} denote the set of players. Each player k selects a strategy sk from a set Sk.
For each subset of players S ⊆ K and corresponding strategy profile s = (sk)k∈S , player k incurs a
costs CS

k (s). Note that the strategies are independent of the subset S. Let CS(s) =
∑

k∈S C
S
k (s)

denote the total cost of a subset of players S and corresponding strategy profile s. We denote by
s−k the strategy profile of all players except player k, such that s = (sk, s−k).

Definition 3.1 (Smooth games). A cost-minimization game is called (λ, µ)-smooth, with λ > 0
and µ < 1, for player set S ⊆ K, if for all corresponding strategy profiles s, s?, we have∑

k∈S
CS
k (s?k, s−k) ≤ λ · CS(s?) + µ · CS(s) .

We assume that the subset of players that participate in the game is determined stochastically.
To that end, let D be a random variable with probability mass function pD : 2K → [0, 1]. For each
S ⊆ K, pD(S) represents the probability that only players from S play the game.

Given a strategy profile s, define the expected total costs as

C(s) =
∑
k∈K

∑
S∈2K
S3k

pD(S) · CS
i (s) .

The strategy profile s∗ minimizing the expected total costs is called optimal.
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We propose the following definition of the observed equilibrium for cost-minimization games
with stochastic demand, following the same reasoning as described in Section 2.4. The definition
is in line with the Perfect Bayesian equilibrium in these games.

Definition 3.2 (Observed equilibrium). A strategy profile s is an observed equilibrium if for all
k ∈ K and all s′i ∈ Si, ∑

S∈2K
S3k

pD(S)∑
S∈2K
S3k

pD(S)
· CS

i (s) ≤
∑
S∈2K
S3k

pD(S)∑
S∈2K
S3k

pD(S)
· CS

i (s′i, s−i) .

Theorem 3.3. Let s an observed equilibrium strategy profile and let s∗ be an optimal solution. If
a cost-minimization game is (λ, µ)-smooth for all player sets S ⊆ K, then

C(s) ≤ λ

1− µ
· C(s∗) .

Proof.

C(s) =
∑
k∈K

∑
S∈2K
S3k

pD(S) · CS
i (s)

≤
∑
k∈K

∑
S∈2K
S3k

pD(S) · CS
i (s∗i , s−i)

=
∑
S∈2K

∑
k∈S

pD(S) · CS
i (s∗i , s−i)

≤
∑
S∈2K

pD(S) · (λ · CS(s∗) + µ · CS(s))

= λ · C(s∗) + µ · C(s) ,

where the first inequality follows by the equilibrium condition and the second inequality by (λ, µ)-
smoothness of the cost-minimization game for all player sets S ⊆ K.

In particular, all known price of anarchy bounds for, for example, atomic or atomic splittable
players also extend to the setting with random player sets. Moreover, one could define mixed
observed equilibria, correlated observed equilibria, and coarse-correlated observed equilibria in a
similar fashion as these are defined for games with deterministic demand, and the bound would
still hold.
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